ANL/FE-85-3 ANL/FE-85-3

PROPERYY OF

1 ey
Gy

AM1L-W Tachntcal LID

ras

THE SYSTEMS ANALYSIS LANGUAGE TRANSLATOR (SALT):
USER’S GUIDE

by

Howard K. Geyer and Gregory F. Berry

(o}
Ny o o FOSSIL ENERGY PROGRAM

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated by THE UNIVERSITY OF CHICAGO
for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency
thereof.

Printed in the United States of America
Available from

National Technical Information Service

U. S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes
Printed copy: A08
Microfiche copy: A01

Distribution
Categories:
UC-32,-90

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue, Argonne, Illinois 60439

ANL/FE-85-3

THE SYSTEMS ANALYSIS LANGUAGE TRANSLATOR (SALT):
USER'S GUIDE

by
Howard K. Geyer* and Gregory F. Berry

Energy and Environmental Systems Division

January 1985

work sponsored by

U.S. DEPARTMENT OF ENERGY
Morgantown Energy Technology Center

*Engineering Division.

3y rva ._V_'.h;_..'. 45
- eRGA \THA

8 KOTAIRRAR P ENE DAL EY TAA
M T el o

o R

s e /) el s

»

YORRV L O T8
ALY eokan o

ABSTRAGCT. coeeadiconsnsspopnnse B e taio inib aio s sie 5l is 4010 aa e LA INa AR A TS & us
1S INTRODUCTION oo cvoaoisnnings R it s P ihiats iaie staiaie & s Lo AT R At S #Risale ainieleaia o
L TR SR A S R T B PR e PR e o biaiatala s alsNTs o

1
2 Examples ey e ma s minn ain i IRNSIRTeYS o ain e laale aial afatebinialalie; o Siwlerate s
3 Job-Control Languagecce.. Eiciah o miein wlataiote O o aieioins o Aialbreth »

1.
1.
1.

2 SALT LANGUAGEc.c00... seseccses

PROCESS Statementccce0.
SYSBEG and SYSEND Statements &8s wataieid L SRR s e SRR g
VARY Statement....cceceeeeencncens gead sans st SE ARt . DK
CONSTRAIN Btatement ... calists oo iisiicns caehcais sis o s@wstesiate o eialslein o
" MINIMIZE Statementcceceecececscscacsnnnans A B T
SWEEP Statementccoceeeeaces R A it e = Wb eiaraia o Slats = o mloile
INTEGRATE Statement ...covveeeeccenee a5l olin G Ba e RIMSe) &0 SN ate = Shs Witk &
STEADY Statement «ieesosefosinnssines At Sierte
CONTROL Statement....... A Y S AR SR R e BYianats dicraiatenths
I R R AT RN TR BB IV B T Mi(a = 'a s« (alole o n ' /o aTa o'a ata/s nia-47e(s (oo /s e)o10 s 4\s /e nlenlatata alerotitarurive
.11 SWITCH Statementcccoceeecene e R e 8 e S
.12 PLI Statement ...ccevvenane OGN YOO R G DT O D B e ietaivie S Infes o

5919 89 1909 19 09 19 09 12 03 10
e = D00 =IO

1= Model and Flow Vamables .colassais s sitinidn o sials dis e aisisla aloie/sialalale e »
2 Initialization of Properties Calculations «..eeeeeecececscacsesccecnsanns
.3 Demand-Type ModelS «..ccveecencacns = oislh s inininls o) ¢ nleials slate le akeicls ohuisiots =
4 Flows Used in Steady-State ModelS «ccevveerneeceeenenessnnsosanannnns

4 STEADY-STATE MODELS...ccccecccececcoccsd B ioieisiaa e laiais s ainis 0iete's bisia coues

4.1 Generic Combustor/Gasifier Model ..ccecveevecscscccncnnanes ke so simlatals =
4.2 Generic System-Component ModelS «ceceveereocoscnsas SIS e & simiare o

4.2.1 Compressor Model...ccccoecccvcccencccccccasccncs cececccncanse
Deaerator Model ..cvveeeeccccnccnnncee
Flash Model e I R i e
Feedwater-Heater Model cvceevevsccnncnnnns e Vet o haat i e
R e N I e e o s e e winia a w aim s n m/ais s mia's a o lais ' misinsials's s s s uin s ok
Heat-Exchanger Model ccceveveeccccecnss Wi wneie wimm e ekl S0 o
Flow=Initiator MOCE] . . 5 s carertelaniatole s/ts s s 5 ataislaiain ofs o/ e¥oare it o7 s 0 ln 0 04
Blaw=Mixer MoQBl . sensss e sanssassssiaeaatesssaeestsnssseeses :
Steam-Condenser Model...oceesocescecessccosccnnnns
e = IINUIMOOE] 5 5 o pip-9 0059 Steiciante s bieis aiss Hoiala bialers LIAIARR
oW BRIt MOMHE] o - s e cvavinencsivninseasinssosesssens
Pump Model .essssssssesesss o o SN AR
Fuel-Flow- [mtlator Model.............'
Fuel-Dryer Model WG bisin s s slvns O 005y oy e 30 S
Nozzle Model . cccoococnsceccse Y L R o
TR ORI B e o oaia d i sinin s o e« o e sa 06 a0 s 0% ialo a/e ataroine
Stack Model T AT B A O T RS s Al g

-
by
)

e e o o e
S 8- %- ¢ &

HHHHHHHH’@@QQU‘I&“N

NN WN-O

il ol ol ol ol
NNNNNNN!@NNNNNNN

111

CONTENTS (Cont'd)

4.3 ‘Turbine Madel8: « s s sae s shises s stnnEne Blelslalatale/niels atats sleiale's e lelo /s s 6.0 n 0000
4.3.1 Steam-Turbine Model L P T
4.3.2 Gas-Turbine Model veess u

4.4 Fuel-Cell ModelS « v osansncssonsnaissnar e
4.4.1 Molten-Carbonate Fuel-Cell Model
4.4.2 Solid-Oxide Fuel-Cell Modelc00.... S S A
4.4.3 Phosphoric Acid Fuel-Cell Model ...vvvvvnnnnnnn. Sl cn s sopese

4.5 Magnetohydrodynamic-Generator Model v.vvvvvvnnnnn. % o' it e n o » s gwa

4.6 Component Models for Liquid-Metal SystemS ..ceeeeeeeeeeresnseonsassssns

4.6.1 Liquid-Metal Pipe MOdel ..o c vt ainnnineilonvassioesttier oz cons
4.6.2 Liquid-Metal Nozzle Model PO N S e
4.6.3 Liquid-Metal Diffuser Model «..vevevvenenncsnnnnes e ol
4.6.4 Liquid-Metal Magnetohydrodynamlc Generator Model W e

7 Two-Component Liquid/Gas Separator Model....coeeeveeervennencnns A e

.8 Two-Phase Component Modelsccocococccscsssccccccanes

4.8.1 Two-Phase Mixer Modelcc0uuns

4.8.2 Two-Phase Nozzle Model cccccevovassosssssnanses oo s nne s anm s

4.8.3 Two-Phase Diffuser Model....... edseaisdsesnesnenn s s nn see

4.9 System Model.......

EXAMPLES USING STEADY-STATE MODELS . ccccccccccccscccscsssscsssscnss

51 ‘Simple System ConfIZUrations ...« - a5 aesesislaes sy ieiaiinnie: e ol r St

5.1.1 Simple Steam-Flow System cscesscssecssscesenns
Inclusion'of 8 System Model ;i = csinisiaaiessses sl
Inclusion of a Demand Model Constraintcoveveeenennns SR
Inclusion of User-Imposed Constraints. icescaccsansssassnnss
Inclusion of an Optimization Problem ...ceeeecececosacnaaas seesan
Inclusion of a Parameter Sweep
Inclusion of a Feedback Loop aleaiols ainis e mpss im mi e oo lalat et
ummaryof the Input-Formation Process
nalysis of Power-Plant Systemscc0... P L T e B
«3:1 . Fogsil/Steam Power Plant ».veecsccevrsasissans et
.2 Open-Cycle Magnetohydrodynamic Power PRI S ek oy Tt
.3 Solid-Oxide Fuel-Cell Systemc0uvu.. R .
.4 Liquid-Metal Magnetohydrodynamic System........ .

(2)
oe
7t)
ooanpunaaaaaa
obo bt AR O RR
SO N

FAILURE CAUSES AND CURES .cicveecenccess .

8.1 Introduetion cos e cvaiivanstssisnnsshs b s

6.2 Failures Due to Mathematical Problems
6.2.1 .Constraining Tasks «.ccsvensssesss
6.2.2 Optimization Tasks cecceeeereneennenee e ey e siwt Cantay v

6.3 Failures Due to Physical Problemsoveuuun.. .

ADDING NEW MODELS AND FLOW TYPES ..
7.1 .The Interface File is viiatasisvnsssanis TR o e e B e e .

7.2 -Adding New.Madels..oveiioesiaseotis a e
7.3 Adding New-Flow TYpes «.usssssisdonnssscis

iv

CONTENTS (Cont'd)

REFERENCES scfsotvscsnseancatesss T T Tatuys A8 ale-o 15 0 /s o0 s s aia's o 4isie esisis o siensnish 97
APPENDIX A: Job-Control Language for IBM System at ANL O hsa 95
APPENDIX B: Abbreviations for Key Words.....c.coccecescceccccnscsccnsscsss 103
APPENDIX C: Units Used in Salt Modelscccevnenrennnnnn sesensesees soem s 107
APPENDIX D: “FoSsil/Steam Power PIantcecesiesieioescioninssisiaesssisane Skl
APPENDIX E: Open-Cycle Magnetohydrodynamic Power Plant ...ccceveencncnnss 123
APPENDIX F: Solid-Oxide Fuel-Cell System Sies o ie.aisin siaze sber e¥audln GTazaT n s R 0l 135
APPENDIX G: Liquid-Metal Magnetohydrodynamic Power Plant eo. 145
FIGURES
S InpLe SERRTIRBEEN o ol e ala s s s sle laia iin:a’s w.eisliale o eis.a s:ojetaia s s tans #a. ot 2
2 Simple Steam Path with Bypass Leg...coceveeeennnn. olesis.w i alers esessecsccinns 3
Jd Parallel~Path Steam System .. ciccccececcasscsnscncnssassoncssssass cesces 4
4 System with a Multiple-Entry Modelccevveeneecnrecncnnns RSSO S 5
5 Alternative Flow Arrangements for the Splitter Modelccvevueaennns . 13
6 Model with One Pass-Through Flow, One Input Flow, and One Output
Flow ..cccocvee ceesessessnssns oo suivsiaalniainisle salsseweonissuisnsines csencecs 14
7 Flow-Initiator Model.............. B DG BT GG OO O A Bslulee wiateicuinta 14
8 Simple Three-Model SyStemM ...ceceeeessesccssscacscaccnsnns o 15
9 Simple Five-Model Systemeveevereeccnocnasns SO O O e O wh, +16
10 Model with Multiple Pass-Through FIOWSccceveeerncracanns BT osion sl O
11 Example Using a Multiple-Entry Model «...cccevuvee SiRioks = nlsiais sinlsls aioalolaisioth Sl g
12 Simple Steam-Plant System............ S o S O IOt o 55
13 Simple Steam-Plant System with Feedback Loop........... RO S T 61
14 Fossil/Steam Power Plant R T R T R S 65
15 Open-Cyecle Magnetohydrodynamic Power Plantoc000ee e oo 71

CONTENTS (Cont'd)

16 Solid-Oxide Fuel-Cell System ..ecoeeees ¥.5 68 asate nateisier

17 Liquid-Metal Magnetohydrodynamic System....... N T isissinssesneen JEE

vi

THE SYSTEMS ANALYSIS LANGUAGE TRANSLATOR (SALT):
USER'S GUIDE

by

Howard K. Geyer and Gregory F. Berry

ABSTRACT

The Systems Analysis Language Translator (SALT), a systems-
analysis and process-simulation computer code for steady-state and
dynamic systems, can also be used for optimization and sensitivity
studies. The SALT code uses sophisticated numerical techniques,
including a hybrid steepest-descent/quasi-Newtonian multidimensional
nonlinear equation solver, sequential quadratic programming methods
as optimizers, and multistep integration methods for both stiff and
nonstiff systems of equations. Based on a preprocessor concept, the
code uses a language translator to allow the user great flexibility in
specifying a systems-analysis problem using a mostly free format and
user-defined labels. The code uses precompiled component models,
several flow types, and numerous thermodynamic and transport
property routines, including a gas chemical-equilibrium code. The
SALT code has been used to study open-cycle and liquid-metal
magnetohydrodynamic systems, fuel cells, ocean thermal energy
conversion, municipal-solid-waste processing, fusion, breeder
reactors, and geothermal and solar-energy systems.

1 INTRODUCTION

»

1.1 OVERVIEW

The Systems Analysis Language Translator (SALT) is a steady-state (see Refs.
1-7) and dynamic (see Ref. 8) system code that can analyze lumped-component systems
of arbitrary configuration. As a steady-state code, SALT excells at performing
nonlinearly constrained optimization studies and parametrie studies and can establish all
kinds of user-imposed system constraints. The code uses state-of-the-art problem-
solving techniques, including hybrid steepest-descent/quasi-Newtonian equation solvers
and sequential quadratic programming methods as optimizers. As a dynamic code,
SALT uses multistep methods for both stiff and nonstiff systems and determines steady-
state initial values using hybrid te«':hniques.11

The SALT code is a preprocessor that accepts input from two primary files,
STRUCT and INTF, and generates a PL/I code representing a given system problem. The
STRUCT file contains user-supplied data representing the system configuration for the
specific problem to be analyzed, together with instructions defining system constraints,
objective functions, parameter sweeps, etc. The INTF file contains information needed

at interfaces with the system components. This file usually need not concern the user
unless, for example, new models are being added to the component library.

Key words and user-supplied data are employed to represent the system and to
accomplish the various analytic tasks. The 13 primary key words used at present are
PROCESS, SYSBEG, SYSEND, VARY, CONSTRAIN, SWEEP, MINIMIZE, PLI,
INTEGRATE, STEADY, SWITCH, CONTROL, and DATA. Before considering the SALT
language in detail, we present several simple examples.

1.2 EXAMPLES

The following examples treat conventional fossil/steam power plants, but such
power systems are by no means the only area of application for SALT. These examples
also do not necessarily conform to the requirements of the models presently available for
use with SALT; rather, they are intended to give the user some preliminary idea of the
language's appearance.

Flow Model for a Simple System

As an initial example, consider a simple steam plant that consists of a steam
flow passing through a heater (HT), a steam turbine (ST), a steam condenser (SC), and a
water pump (PUMP). Figure 1 depicts the system configuration; in this figure, STM_1
indicates the steam flow, HT_1 the heater, ST_1 the steam turbine, SC_1 the steam
condenser, and PUMP_1 the water pump. This configuration is represented within the
SALT language by the use of the following PROCESS statement:

PROCESS STM_1-> HT 1 ST_1 SC_1 PUMP_1

The steam flow is represented by the symbol with the attached arrow, "->"; in general,
flow is always represented within the SALT language by a symbol with such an arrow.
Each symbol representing a model or a flow consists of a string of characters for the
model or flow type, followed by an underscore, " ," and the character "1." This "1"
character -- actually a user-defined label that could have been any string of characters
-- is used to distinguish between models or flows of the same type, where more than one
is used. Thus, if two steam turbines had been used (e.g., for high-pressure and low-
pressure stages), they might have been denoted as ST 1 and ST 2 or as ST HP and ST LP.

In Fig. 1, the steam flow is shown passing through each of the models; this case is
represented within the SALT language by writing the steam-flow symbol before these

STM_1
— HT.1 —% ST.1 —¥ SC_1 [—®PUMP_1—»

FIGURE 1 Simple Steam Path

models, with the arrow placed after the flow symbol and pointing to the models through
which it passes.

Use of the Flow Splitter Model

Figure 2 shows a system configuration in which part of the steam is split off by a
splitter model (SP_1), bypasses the heater model and steam-turbine model, and is then
remixed with the STM 1 flow in a mixer model (MX 1). The configuration shown in Fig. 2
is represented within the SALT language as follows:

PROCESS STM_1-> SP_1 ->STM_ 2
HT 1
ST_1
MX_1 <-STM_2
sc_1

The correspondence between the SALT input and the figure remains fairly straight-
forward. In addition to the pass-through flow used in the first example, this system uses
two other flow classes. The first of these is an output flow that originates from a model,
such as the STM_2 flow from the SP_1 model. These output flows are, in general,
represented by flow symbols written after the models from which they originate, with
the arrow pointing to the flow. The second flow class is an input flow, such as the STM 2
flow going into the MX 1 model. This class of flows is again specified by writing the
symbol after the model to which it pertains, but with the arrow pointing to the model.
Whether a flow is classed as a pass-through, input, or output flow is determined by the
relationship of the flow to the model and is not just a property of the flow. Thus, STM 2
above is both an input flow to the MX 1 and an output flow from the SP_1. Input and
output flows pertain only to the single model preceding them. In the present example,
STM_2 does not interact with the HT 1 or ST_1 models, but STM_1 -- represented as a
pass-through flow -- still flows through all of the models.

The actual layout of the SALT input is a matter of individual preference; only
the order of the symbols is important. Thus, the SALT input statement corresponding to
the system in Fig. 2 could be specified as

PROCESS STM_1-> SP_1 =->STM 2
HT_1 ST 1 MX_ 1 <-STM 2
sc_1

STM_1

STM_2

FIGURE 2 Simple Steam Path with Bypass Leg

or even as
PROCESS STM_1-> SP_1 ->STM_2 HX 1 ST 1 MX 1 <-STM_2 SC_1

The user will find some forms of input statement easier to follow than others.

Use of Parallel System Components

Figure 3 shows a system that uses an additional steam turbine in parallel. This
configuration is represented within the SALT language by the following:

PROCESS STM_1-> SP_1 =->SMT_2
= HT_1 ST_1
STM_2-> ST_2
STM_1-> MX_ 1 <-STM_2
sc_1

In this example, after the STM 1 flow has been processed through the ST 1 model, STM 2
must be processed through the ST 2 model before both flows can be mixed in the MX 1
model. Thus, the pass-through flow STM 1 is interrupted by simply writing STM 2 as a
new pass-through flow through the ST 2 model. The STM 1 flow is then reestablished as a
pass-through flow to complete the system configuration. In general, any pass-through
flow may be terminated simply by writing another flow as a pass-through flow; the first
pass-through flow is temporarily suspended (but not lost or forgotten).

This example also demonstrates that the order of the models is important in
representing the system configuration. Also, all the flows must have been processed
through the models they pass through before the next model that uses these flows can be
specified. Here, it would be incorrect to specify the MX 1 model before the ST 2 model.

Use of the Flow Initiator Model
In the examples presented so far, the incoming STM_1 flow simply passed through

the first model within the system configuration. Actually, SALT requires that all flows
originate from models (such as the SP model used above). In order to start a flow, a

STM_1
—» SP_1 —» HI_1 —¥ ST.1 —» MX_1 | SC_1

STM_2

ST=2

FIGURE 3 Parallel-Path Steam System

special initiator model, denoted IN, is used. @ This model has only one flow, which
technically is an output flow; however, within the SALT input statements it is specified
as a pass-through flow. The correct SALT input statement for the first example
discussed would actually appear as follows:

PROCESS STM 1-> IN 1 HT 1 ST_1 SC_1 PUMP_L

The other examples would also use this initiator model. The initiator model assigns
initial values to the steam-flow parameters.

Use of Multiple-Entry Models

Figure 4 shows a system configuration that includes a multiple-entry model. This
multiple-entry model is a heat exchanger (HX); the hot stream is processed in one entry
to the model and the cold stream in another. The two entries are specified at different
points within the SALT input. Such entries are specified by adding a colon and an entry
designator after the model name. For an HX model, these entry designators are "H" for
the hot side and "C" for the cold side. Thus, the system depicted in Fig. 4 is represented
in the SALT language as follows:

PROCESS GAS_1-> IN G HX_1:H
STM_1-> IN S HX 1:C ST 1 SC_1 PUMP_1 IN_S:CYCL

The IN model also is a multiple-entry model. The additional entry to this model, denoted
"CYCL," is used to generate the constraints necessary to close the steam loop at the
"back door" of the IN S model. The CYCL entry does not by itself close the steam loop;
that is done by VARY and CONSTRAIN statements (described below).

Actually, most of the models used by SALT are multiple-entry models. Most
models have an "OUT" entry for printing out the resylts of the calculations. This entry
does not require any flows, and a special NULL flow has been provided to terminate any

GAS_1
M NG ¥
HX_1
STM_1
IN_S STEH o S
PUMP_1

FIGURE 4 System with a Multiple-Entry Model

existing pass-through flow without replacing it with another pass-through flow. .F°"
example, to call the output entry to the ST 1 model (where "call" means "specify in a
PROCESS statement"), one would write the following statement:

PROCESS NULL-> ST_1:0UT

(The NULL flow does not require a label.) Of course, all of the model outputs may be
specified, as in this version:

PROCESS NULL-> IN G:OUT IN_S:OUT HX_1:OUT ST_1:OUT
SC_1:0UT PUMP_L:0UT

This PROCESS statement (more than one PROCESS statement may be used in the SALT
input) should only follow those PROCESS statements that perform the calculations and
process the flows. Otherwise, there would be no results to be printed when the model
output entries were called. Because calling the output entries is the only way to obtain
model output, the SALT code includes an abbreviation for this task:

PROCESS NULL-> *_*:OUT
Here, "* *" refers to all of the models called within the system configuration.

Assignment of Values to Model Parameters

So far, we have concentrated on representing simple system configurations by
means of PROCESS statements. Actually, even the largest systems can be represented
in terms of the same simple methods used with these simple systems. The PROCESS
statement itself is the minimal input needed to run SALT. However, the configuration of
a system does not by itself represent the system. Each model within the system usually
has numerous parameters to which values must be assigned before the system simulation
can be performed. (These parameters have default values, but these values may not be
the ones required for a specific system.) An additional SALT statement, the DATA
statement, is used to assign the proper values to these parameters.

Before giving an example of the DATA statement, we must explain how to refer-
ence the model parameters. As shown by the PROCESS statement, each model used in a
system has a name consisting of a model type (e.g., HX for heat exchanger) followed by a
user-defined label (e.g., HX 1). The parameters (both input and output) for a model are
referred to by writing this model name, followed by a period, and then the parameter
name. For example, the steam-turbine model (ST) has a parameter (denoted as EXIT_
PRES) representing the exit pressure of the flow from the turbine. Within the SALT
input, this parameter would be referenced for the ST LP model as ST LP.EXIT PRES. All
the parameters of all the models may be referenced in a similar way. The_parameter
names themselves may also have various levels, separated by periods. Thus, the power

produced by the steam turbine is denoted as POWER.PRODUCED and would be referred
to as ST LP.POWER.PRODUCED for the ST LP model.

The DATA statement might then take the following form:

DATA ST_LP.EXIT_PRES=0.l;
ST_LP.EFFICIENCY=0.85;
PUMP_1.EXIT PRES=120;
PUMP_1.EFFICIENCY=0.80;

Here, the exit pressures and efficiencies of the ST LP and the PUMP_1 models have been
assigned values. Only one DATA statement is allowed, and it must be the last statement
within the SALT input; however, the statement may be as long as necessary in order to
define values for all of the model parameters. Certain abbreviations are allowed. For
example, the model name need not be rewritten before each parameter name; instead,
one leaves a blank following the model name:

DATA ST LP .EXIT PRES=0.l; .EFFICIENCY=0.85;

PUMP_1 .EXIT_PRES=120; .EFFICIENCY=0.80;
At this point, let us show the complete set of SALT inputs for our first example (see
Fig. 1). An initiator model, IN_1, is needed in order to start the steam flow with some
values. A typical set of SALT inputs might then take the following form:

PROCESS ~ STM_1-> IN_1 HT 1 ST 1 SC_1 PUMP 1
NULL-> % *:0UT

DATA IN 1 .T=600; .P=120; .M=100; .ID='H20';
HT 1 .HEAT=1E7;
ST_1 .EXIT PRES=1.03; .EFFICIENCY=0.82;
PUMP_1 .EXIT PRES=120; .EFFICIENCY=0.80;

Here, the steam flow is started at a temperature, T, equal to 600 K; a pressure, P, of
120 atm; and a mass flow rate, M, of 100 kg/s. A total of 10 MW of heat is added to this
flow by the HT 1 model; the steam is then expanded to 1 atm at an isentropic efficiency
of 82%, condensed at 1 atm, and pumped back to 120 atm at an isentropic efficiency of
80% in the PUMP_1 model. The model output entries are then called to print out the
results of the simulation. This PROCESS statement and DATA statement are all that are
needed for this problem.

Calculation of System Parameters

One of the functions of systems analysis is to calculate certain system
parameters, as opposed to model parameters. Such system parameters are often
functionally dependent on the collective values of the model parameters. Thus, for
example, the total power produced by a system is the sum of the powers produced by the
individual component models. Such system parameters are obtained by calling system
models. These systems models usually do not process any flows, but they can process
individual model parameters in each of the models. The system models themselves are
specified within the SALT input (like any other model) by the use of the PROCESS
statement. They may also have multiple entry points; in particular, there may be
multiple output entries for the printing not only of the system parameters, but also
(possibly) of tabular summaries of the individual model parameters used in calculating
such system parameters.

For example, the SYST system model is used to calculate power summaries and
to print such summaries when its OUT entry is specified. This model will also print out
tables of the exit flow conditions from each model, by flow name. A concise overview of
the system simulation can be obtained by calling only this one output entry, rather than
calling all of the individual model outputs. In the complete SALT input for the first
example, the SYST and SYST:OUT entries could be called simply by replacing the one
line

NULL-> *_*:0UT
with the line
NULL-> SYST_1 *_*:0UT

The system model, like all models, requires the user-defined label; the "* *" notation
includes any system models. Of course, any input parameters that the SYST 1 model
requires must also be added to the DATA statement.

Using the PROCESS and DATA statements, it is possible to model many systems;
however, as indicated above, closed flow loops actually require the use of additional
SALT language statements. The real power of the SALT code lies in its use of these
additional statements to establish system constraints, perform optimizations or
parametric studies, ete.

Use of System Constraints

Consider the first system (shown in Fig. 1) again. Suppose we wish to make the
total power produced by the ST 1 model equal to ten times the power consumed by the
PUMP_1 model and that the exit pressure of the ST 1 model is to be varied to establish

this constraint. This type of problem is symbolized using the VARY and CONSTRAIN
statements, as follows:

VARY ST_1.EXIT PRES = 1.0 0.0l 5.0
CONSTRAIN ST_1.POWER.PRODUCED = 10%*PUMP_1.POWER.CONSUMED

The three numbers within the VARY statement represent an initial value for the steam-
turbine exit pressure and lower and upper bounds between which the exit pressure may be
varied. The actual values that the exit pressure takes in order to establish the constraint
are dictated by an equation solver. This equation solver uses an iterative technique,
starting with the initial value furnished in the VARY statement.

In many cases, constraints can be thought of as constraining some subsystem,
rather than the entire system. These subsystems are delimited, within the SALT inputs,
by means of SYSBEG and SYSEND statements. These statements, consisting of the
SYSBEG and SYSEND key words followed by a delimiting user-defined label, are inter-

spersed among the other SALT language statements to define the beginning and ending
points of a subsystem.

VARY and CONSTRAIN statements, as well as other SALT language statements
that define iterative tasks, must always be included between the SYSBEG and SYSEND
statements. Thus, the SALT input for our simple system (Fig. 1) -- with the constraint
included -- might appear as follows:

SYSBEG A
PROCESS STM 1-> IN 1 HT 1 ST 1 SC_1 PUMP_1
VARY ST _1.EXIT PRES = 1.0 0.01 5.0
CONSTRAIN ST 1.POWER.PRODUCED=10*PUMP 1.POWER.CONSUMED
SYSEND A = il
PROCESS NULL-> SYST 1 * *:0UT
DATASE = i

The SYSBEG-SYSEND delimiter label used is "A," and the subsystem actually
taken is the entire system configuration. In this case, varying the steam-turbine exit
pressure does not affect the models upstream, so the same results would be obtained by
defining the subsystem only around the ST 1, SC_1, and PUMP_1 models; then the IN 1 and
HT_1 models would be called only once before the iterations within the subsystem were
performed. The overhead of calling the IN_1 and HT 1 models many times would be
avoided, and a faster and less expensive computer run would result. With the subsystem
only around the ST 1, SC_1, and PUMP_1 models, the SALT inputs look like this:

PROCESS STM_1-> IN_1 HT 1
SYSBEG A

PROCESS STM_1-> ST 1 SC_1 PUMP_1

VARY ST_1.EXIT PRES = 1.0 0.01 5.0

CONSTRAIN ST _1.POWER.PRODUCED=10%PUMP_1.POWER.CONSUMED
SYSEND A
PROCESS NULL-> SYST 1 *_*:QUT
DATA . .

Any number of VARY and CONSTRAIN statements can be included within a
subsystem. For example, in addition to the constraint specified above, suppose it were
required to constrain the outlet temperature of the heater, denoted as HT_1.TEMP, to
800 K (for a fixed heat load) by varying the steam-flow rate between 100 and 200 kg/s.
This could be stated as follows:

SYSBEG A
VARY IN_1.M = 150 100 200
CONSTRAIN HT_1.TEMP = 800
VARY ST_1.EXIT PRES = 1.0 0.0l 5.0
CONSTRAIN STM_1.POWER.PRODUCED=10*PUMP_1.POWER . CONSUMED
PROCESS STM_1=> IN_1 HT 1 ST 1 SC_I PUMP_l

SYSEND A

PROCESS NULL-> SYST 1 *_ %:0UT

DATA .

10

The VARY and CONSTRAIN statements need not always be written at the end of th'e
subsystem; they can be written between any statements within the subsystem, and their

order is immaterial.

For this particular problem, the constraints and the parameters varied to
establish them can actually be split into two subsystems, as follows:

SYSBEG A
VARY IN_1.M = 150 100 200
CONSTRAIN HT_ 1.TEMP = 800
PROCESS STM I-> IN_1 HT_ 1
SYSEND A
SYSBEG B
PROCESS STM_1-> ST 1 SC_1 PUMP_1
VARY ST 1.EXIT PRES = 1.0 0.01 5.0
CONSTRAIN ST 1.POWER.PRODUCED = 10%PUMP_l.POWER.CONSUMED
SYSEND B
PROCESS NULL-> SYST 1 *_*:OUT
DATA .

This form is slightly more efficient computationally then the previous form, but both
approaches should yield the same results within numerical accuracy. The single-
subsystem form attacks the problem as two equations in two unknowns; the two-
subsystem form, as two sets of one equation in one unknown. It is also possible to have
subsystems nested within other subsystems.

Optimization of System Parameters

The constraint specified above concerning the steam-turbine power produced is
somewhat contrived. A more realistic goal might be to maximize the turbine power
produced.* This type of problem, an optimization, is treated in the SALT language by
using the MINIMIZE statement. (By minimizing the negative of an expression, one
obtains the maximum of that expression.) Thus, maximizing the steam power produced is
represented as follows:

MINIMIZE ~-ST_l.POWER.PRODUCED
This statement would replace the constraint used previously, as follows:

PROCESS STM 1-> IN 1 HT 1

SYSBEG A % “
VARY ST 1.EXIT PRES = 1.0 0.01 5.0
MINIMIZE ~-ST_l.POWER.PRODUCED
PROCESS STM_I-> ST 1

*Net power produced by the system would be an even better objective function. The
example is only used to illustrate the SALT language.

11

SYSEND A

PROCESS STM_1-> SC_l1 PUMP_l
NULL-> SYST_1 *_*:0UT

DATA .

Both the parameter being varied and the objective function of the MINIMIZE statement
pertain only to the ST 1 model. Therefore, this model is the only one included in the
subsystem.

Essentially, the system in question has one degree of freedom; one variable is
varied in order to maximize the steam-turbine power. For an optimization problem,
additional variables may also be varied, leading to systems having higher degrees of
freedom. Suppose that in addition to the turbine exit pressure, the heat transferred in
the HT 1 model and the inlet steam-flow rate were also varied, as represented by the
following statements:

SYSBEG A
PROCESS STM 1-> IN 1 HT 1 ST_1
VARY IN_1.M = 150 100 200
VARY HT_1.HEAT = 1E6 1E5 1E7
VARY ST L.EXIT PRES = 1 0.01 5.0
MINIMIZE -ST_1.POWER.PRODUCED
SYSEND A
PROCESS STM_l-> SC_1 PUMP_1
NULL-> SYST 1 * *:0UT
DATA .

If additional parameters pertaining to additional models are varied, these models also
must be included in the subsystem. 5

It is possible to include the CONSTRAIN statement within optimization tasks.
Thus, to constrain the HT 1 model exit temperature to a value of 800 K, one simply adds
the the statement:

CONSTRAIN HT_1.TEMP = 800

to the subsystem. By adding such an equality constraint, the degrees of freedom are
reduced from three to two. If two more equality constraints were added, then the
problem would have zero degrees of freedom; the parameters being varied would be just
sufficient to satisfy the constraints, with none remaining for the minimization. It is
possible to include more constraints than parameters being varied; however, such
constraints must be inequalities. For example, if it were enough to keep the exit heater
temperature greater than 800 K in the foregoing example, then the constraint would be
written as follows:

CONSTRAIN HT 1.TEMP > 800

12

This constraint would not necessarily reduce the degrees of freedom from three to two.

As with subsystem tasks handled by pure-equality constraints (i.e., nonoptimiza-
tion tasks), more than one optimization subsystem task may be used, and the tasks may
also be nested. Optimization tasks may also be used along with nonoptimization tasks.
Numerous ways may exist in which to set up the same basic problem using the SALT
language. Of course, any problems set up should be well posed.

Use of the Parameter Sweep

Instead of being interested in the single value of some parameter that solves an
optimization problem or establishes a constraint, one might wish to consider the results
of the system simulation for an entire range of parameter values (sensitivity analysis).
Such parameter-sweep problems are defined using the SWEEP statement. For example,
to see the effects of varying the ST 1.EXIT PRES from 1 to 5 atm in increments of 0.5
atm, one would write:

SWEEP ST_1.EXIT PRES = 1 TO 5 BY 0.5

Sweeping tasks, being defined within a subsystem, require the SYSBEG and SYSEND
subsystem delimiters. Taking our simple example of Fig. 1 and including this sweeping
task, we have the following for the SALT inputs:

SYSBEG A
SWEEP ST_1.EXIT PRES = 1 TO 5 BY 0.5
PROCESS STM_1-> IN 1 HT_1 ST 1 SC_1 PUMP_l
NULL-> SYST 1 * *:0UT
SYSEND A
DATA .

Unlike the other tasks, this sweeping task also includes the calls to the model output
entries, as well as the SYST 1 model, within the task. If the entries were called within
the task rather than after the SYSEND statement, then only the results for the last
turbine exit pressure would be printed, defeating the purpose of the sweep. Sweeping
tasks should not include VARY, CONSTRAIN, or MINIMIZE statements; however,
additional subsystems that do include these statements may be nested within the
sweeping tasks.

1.3 JOB-CONTROL LANGUAGE

The sequence of steps required in running the SALT system code after the
STRUCT file has been prepared is included in a job-control-language (JCL) procedure
used on the IBM computer system at Argonne National Laboratory (ANL). (The SALT

code itself exists on computer tape at the National Energy Software Center, located at
ANL.) This JCL procedure is reproduced in App. A

13

2 SALT LANGUAGE

This chapter describes the elements of the SALT language. The SALT code
currently uses 13 different primary key words to represent the system and the various
tasks that are to be performed (see App. B). Each of these key words and the statements
associated with them are discussed in the following sections.

2.1 PROCESS STATEMENT

The key word PROCESS begins a PROCESS statement, which defines the compo-
nents of the system and indicates how such components are connected by flows. The
system components usually represent such devices as pumps, compressors, heat
exchangers, turbines, etc., but they may also represent purely computational procedures
to be performed within the system analysis. Similarly, the flows of the system usually
represent the flows of gases, steam, air, coal slurries, etc., but they also may represent
simply the flow of information from component to component.

Each component within the component library will process either no flows at all
or one or more flows of a specific type. These flows can be categorized as pass-through,
input, or output flows. A pass-through flow
is one that both enters and leaves a given

component. A flow that enters but does not

leave a component is an input flow, and a F2

flow that leaves but does not enter a

component is an output flow. The _Lq SP
specification of flows as pass-through, S
input, and output flows is dictated by the e
developer of the model rather than by the

user of the system code. Thus, for .

example, a splitter model (SP) might have (a) One Input Flow and Two
been written to handle three flows -- one Output Flows

input flow, F1, and two output flows, F2
and F3 (see Fig. 5a). Alternatively, the SP
model might have been written to process
only two flows -- one pass-through flow, F1, F1
and one output flow, F2 (see Fig. 5b).

7
In using the PROCESS statement to F2

describe a system configuration, one BRI
specifies the pass-through flows first,
followed by the model name, and then the
input and output flows. If a model has no
pass-through flow, then at least one input
flow should be specified before the model
name.

(b) One Pass-Through Flow
and One Output Flow

FIGURE 5 Alternative Flow
Arrangements for the
Splitter Model

14

Consider the system shown in Fig.

6. It consists of only one component, M1, F1 F1
which processes one pass-through flow, F1; e [e
one input flow, F2; and one output flow, M1

F3. This is represented in the SALT code F2 F3
by the following statement: — s

PROCESS F1-> M1 <-F2 ->F3
FIGURE 6 Model with

The symbols with the arrows represent the One Pass-Through Flow,
flows; those without arrows (except the One Input Flow, and
word PROCESS) represent the models. One Output Flow

Pass-through flows are written before the
model, input and output flows after the
model. Pass-through and input flows have
the arrow pointing to the model, while F1
output flows have the arrow pointing to the
flow. The only exception to this rule occurs
when a model has no pass-through flow; in
such a case, the first input or output flow FIGURE 7 Flow-

to the component should be written as if it Initiator Model

were a pass-through flow. For example,

suppose a flow, F1, originates from an

initiator model, IN (see Fig. 7). The configuration shown in Fig. 7 would be correctly
symbolized as

PROCESS Fl1-> 1IN
but not as

PROCESS IN =>F1

For systems with many components, the PROCESS statements for each individual
component are simply strung together without specifying the keyword PROCESS again.
Thus, the system shown in Fig. 8 is symbolized as follows:

PROCESS Fl1-> M1 ->F2
F1-> M2
Bl =5 M3s-DR3

The order in which the models and their flows are written down depends on which flows
are known. A specific model can be written down only when all the other models

generating all the input or pass-through flows for that model have been previously
specified.

The SALT code will "remember" previous pass-through flows, so such flows need
not be specified each time a component is specified; this feature serves to simplify the
PROCESS statement. Thus, if a model is written down without a pass-through flow, it is

1

F1 F1 F1 F1
— M M2 M3 ——
F2 F3
.

FIGURE 8 Simple Three-Model System

assumed that the last-occurring pass-through flow also goes through this model. The
example shown in Fig. 8 can be written as

PROCESS Fl-> M1 ->F2
M2
M3 ->F3

or (because there is no need to skip to the next line for each model) as
PROCESS Fl-> M1 ->F2 M2 M3 ->F3

The user may arrange the layout for maximum eclarity. Caution should be used in
specifying many components and flows on one line when output flows are generated,
because these output flows do not pass through the other components unless they are
written explicitly as pass-through or input flows. Thus, in the foregoing example, flow
F2 does not go through models M2 or M3. Models without pass-through flows, such as the
flow-initiator model, have at least one flow written &s a pass-through flow, because
otherwise the previously occurring pass-through flows would be passed to such a model.

The processing of a flow may be interrupted for the processing of other flows and
resumed later. Consider the example illustrated in Fig. 9. This configuration would be
represented as follows:

PROCESS Fl-> Ml M2 ->F2
F2-> M4
Fl=>" M3 " M5 <-F2

The processing of F1 is interrupted after M2, in order that F2 can be obtained at the
exit of component M4 before M5 is called.

In writing down the model name and flows, the order of the flows with respect to
the model is important. If a model has two pass-through flows, the user must be aware
of which flow is to be specified first. This requirement also extends to the input and
output flows. For example, suppose a model (M1) requires two pass-through flows and

16

F1 1 F1 F1 F1

M4
F2 FZ

FIGURE 9 Simple Five-Model System

one output flow (see Fig. 10). Then F1 and
F2 must be in the correct orfier when the Fd ‘ 1
PROCESS statement is written. The F2
statement M
F2 F
PROCESS Fl-> F2-> Ml ->F3 ™ s

is not the same as

FIGURE 10 Model with

PROCESS F2-> Fl1-> M1 ->F3 Multiple Pass-Through

Flows
(The first of these two statements is the
correct one.) The ordering of the flows
with respect to the model would be decided upon by the developer of the model. All of
the flows required by any model must be specified within the SALT input. For example,
suppose a steam-turbine model is developed that includes a feedwater-extraction flow as
an additional output; that flow must be specified within the SALT input, even if the flow
is assigned a zero mass-flow rate (i.e., the flow is not used within the system).

The SALT code also makes it possible for a model to process multiple flows;
either one flow or several flows can be processed at a time. For example, the heat-
exchanger model was written to process the hot flow in one component call and the cold
flow in another call. In order for SALT to identify which flow such a component is
processing, an optional entry label is added to the model name by appending a colon,
followed by the entry name. In the case of the HX model, these entry names consist of
"H" for the hot flow and "C" for the cold flow. In the system diagram below (Fig. 11), a
flow (F1) originates from the IN model, passes through the hot side of a heat exchanger
(HX), is further processed by another model (M1), and finally is fed back through the cold
side of the heat exchanger. The SALT representation of this diagram would be as
follows:

PROCESS Fl1-> IN HX:H M1 HX:C

If no entry label is used, the SALT code assumes the entry label "C." In some cases,
models have been written such that the processing of the first flow must be done before

17

F1 F1 F1

F1
<+ '——!

FIGURE 11 Example Using a Multiple-Entry Model

that of the other flows of the model. An example of this is the MHD channel model, MG,
where the first flow is the hot-gas flow and the second flow is the cooling-water flow.
The MG model calculates the heat removed from the hot-gas flow when processing the
first flow. The heat removed is retained within the model and is used when the model
processes the cooling-water flow.

In the foregoing examples, the ficticious flows and models have been named F1,
F2, M1, M2, etc. In an actual system problem, the names should correspond to the names
of the flows and models available in the component library and defined within the INTF
file. Each model or flow used in the PROCESS statement takes the form of a model type
(e.g., HX for heat exchanger) or a flow type (e.g., GAS for gas flow), followed by an
underscore and a user-defined label. This label, which can be up to ten characters in
length, is used to delineate multiple components of the same type. Thus, if a system
configuration requires the use of two heat-exchanger models, these models could be
denoted as HX 1 and HX 2 or HX_SH and HX RH (for a superheater and a reheater).
These optional labels are attached directly to the model-type name without any
separating blanks. For the sake of simplicity, we will usually set this label to "1" in our
examples. ¥

The general form of the process statement can now be summarized as follows:
PROCESS spec spec spec . . .«

where spec takes the form
pflow-> ... model:entry <-iflow ... ->oflow ...

Here, the use of ellipsis indicates that the preceding symbol may appear more than
once. "Pflow," "iflow," and "oflow" stand for the pass-through, input, and output flows,
respectively, each of which takes the form of a flow type concatenated with an
underscore and a user-defined label of ten characters or fewer. "Model," which
represents the model name, takes the form of a model type concatenated with an
underscore and a user-defined label, also of ten characters or fewer. "Entry" represents
the optimal entry label. Any or all of the flows may be absent. If no pflows appear, then
the last-appearing pflows are assumed. The special pflow denoted "NULL->" and used

18

without a label can be used to terminate the pflows without generating a new one. The
model entry may also be absent, in which case the code assumes the entry "C."

2.2 SYSBEG AND SYSEND STATEMENTS

SALT, like most system codes, uses an iterative scheme in order to meet various
types of system constraints. The iterations, instead of being performed automatically,
are set up by the user. These iterations may be performed over all or part of the system
configuration. The SYSBEG and SYSEND statements delimit the beginning and end of an
iterative loop. Each of these key words is followed by the same user-defined label, which
must be different for each iterative loop defined; The form of each of these statements
is as follows:

SYSBEG label
SYSEND label

These key words may also define nested loops. The only requirement is that each loop be
either fully contained in or fully excluded from other loops; partial overlapping is not
permitted.

The actual function performed within the SYSBEG-SYSEND loop is dictated by
VARY, SWEEP, or INTEGRATE statements. At least one such statement must be
specified in each SYSBEG-SYSEND loop, with only one of these types specified in any
one loop.

2.3 VARY STATEMENT

The VARY statement defines the variables to be varied in order to meet speci-
fied constraints or perform an optimization. The form of the VARY statement is as
follows:

VARY variable name
3 variable_name

start lower upper
start lower upper

Here, "variable name" is the name of the variable to be varied, "start" is the starting
value, and "lower" and "upper" specify lower and upper bounds on the variable. The
starting value should be specified between these lower and upper bounds. If "start" is
given the value "*," the variable's current value will be used as the starting value. Any
number of variables can be specified, but each must be separated from the others by a
semicolon; this semicolon is a separator, not a terminator, so the last upper bound should
not be followed by a semicolon.

In the VARY statement, the starting value and the lower and upper values may
be either variables or algebraic expressions. In any case, the character string

19

representing these variables or expressions should not contain any blanks and should be
fewer than 31 characters in length. The values of "start," "lower," and "upper" are
evaluated before entering the loop (as determined by the SYSBEG statement) and are not
changed during the loop iterations.

2.4 CONSTRAIN STATEMENT

The statement used to specify constraints takes the form

CONSTRAIN exp op exp
H exp op exp

where "exp" is an algebraic expression of variables known at the end of the loop in which
the constraint statement occurs and "op" is a relational operator ("=," "<," or ">").

The use of inequalities in a CONSTRAIN statement is permitted only when the
MINIMIZE statement is used to define an optimization problem. Algebraic expressions
used in CONSTRAIN statements should be fewer than 72 characters in length. If longer
expressions are needed, they can be shortened to single variables by means of the PLI
statement (see Sec. 2.12), and the single variables can then be used in the CONSTRAIN
statement. As was the case with the VARY statement, the semicolon is used to separate
constraints but not to terminate them.

When no MINIMIZE statement has been specified, the number of equality
constraints must equal the number of variables within the VARY statements for the
SYSBEG-SYSEND loop.

2.5 MINIMIZE STATEMENT

The minimize statement, which defines objective functions for optimizations,
takes the following form:

MINIMIZE exp

Here, "exp" is an algebraic expression of variables known at the end of the loop in which
the statement occurs. As with the expressions used in the CONSTRAIN statement, there
is a length restriction of 72 characters. Longer expressions may be reduced by using PLI
statements. If MINIMIZE is used within a loop, the number of variables in the VARY
statement should be greater than the number of equality constraints; otherwise, there
will be no extra degrees of freedom available over which to perform the optimization.

Since max f(x)= -min(-f(x)), one can maximize a function by minimizing the
negative of that function.

20

2.6 SWEEP STATEMENT

Used to define a parameter sweep, the SWEEP statement takes the following
form:

specification
specification

SWEEP variable name
; variable name

Here, "variable name" is the name of the variable to be swept over and "specification" is
any legitimate PL/I do-loop specification. Thus, the following are all valid SWEEP
statements:

valuel TO value2 BY value3
valuel, value2, value3 TO value4
valuel, value2 WHILE(expl = exp2)

SWEEP variable name
SWEEP variable name
SWEEP variable name

nonou

The last example shows that conditional termination of the sweep is also possible. In this
case, the variable being swept over takes the values "valuel" and then "value2," but only
if "expl" = "exp2." The PL/I do-loop UNTIL option may also be used in the SWEEP
statement.

The specifications are limited to 72 characters, including the variable name and
"=" sign. If the SWEEP statement is used within a SYSBEG-SYSEND loop, then
CONSTRAIN, MINIMIZE, or VARY statements should not be used within this same loop;
however, these types of statements may be used in another SYSBEG-SYSEND loop nested
within the SWEEP loop.

2.7 INTEGRATE STATEMENT

The INTEGRATE statement defines the starting time and output times used
within the dynamie simulation. The last specified output time also defines the
termination time. The form of the INTEGRATE statement is as follows:

INTEGRATE TSTART=tstart TOUT= spec , spec , spec , spec
METH=value TASK=value RTOL=value ATOL=value

where "tstart" is the starting time (usually zero) unless the current job is a restart from a
previous computer run. "Spec" takes one of the following two forms:

value TO value BY value
or

value

21

The first TOUT value should be a number greater than the TSTART time. Output is
always generated for the TSTART time. METH is set either at 10 (for an explicit
variable-order, variable-step Adams method up to twelfth order) or 21 (for Gear's stiff
method). TASK is used to prevent integrating beyond the TOUT values if set to a number
greater than 1. TASK = 1 is the normal mode, in which the integrator may integrate
beyond the TOUT values and then interpolate at the output values. RTOL and ATOL are
relative and absolute tolerances used within the integration. If the parameters TSTART,
METH, TASK, RTOL, and ATOL are omitted, they assume the values 0.0, 21, 1, 10'4, and
10'4, respectively.

2.8 STEADY STATEMENT

The STEADY statement is used to generate a steady-state starting point for the
dynamiec simulation. The form of the steady statement is as follows:

STEADY RTOL=value ATOL=value
where RTOL and ATOL are optional parameters specifying the relative and absolute

tolerances used in determining the steady-state solution.

2.9 CONTROL STATEMENT

The CONTROL statement defines dynamic-system controls. These may take the
form of additional equations to be integrated or algebraic equations to be solved at each
value of time. The general form of the CONTROL statement is as follows:

CONTROL spec ; spec ; Spec « « .
Here, "spec" is expressed either as

D_DT variable = expression
or as

expressionl=expression2 USING variable
The first form defines an additional differential equation, where D _DT represents the
time-derivative operator. The second form is used to define algebraic constraints, where

"expressionl" is constrained to equal "expression2" by suitably varying the "variable"
specified after the key word USING.

22

2.10 DATA STATEMENT

The DATA statement defines the values of the various input parameters used in
the models. Where it is used, the DATA statement should be the last statement within
the STRUCT file. The general form of the DATA statement is as follows:

DATA header variable = value;

header variable = value;

where "header" is optional and is used to store major levels of PL/I aggregate variables
to be used with succeeding variables. If "header" is used, it should be followed by a blank
space, and all variables belonging to this PL/I aggregate should begin with a period.

As an example, suppose we wish to assign values to two parameters (say, PARM1
and PARM?2) of a model M1 and to three parameters (PARM1, PARM2, and PARM3) of a
model M2. We would accomplish this by the following statements:

DATA Ml .PARMl=value; .PARM2=value;
M2 .PARM1=value; .PARM2=value; .PARM3=value;

Other input parameters for other models may be assigned values in like fashion. No
requirements govern the order of parameter assignment. (The names and meanings of all
the model parameters are presented in Chapter 4.)

It is also possible to use algebraic expressions in place of "value." In this case,
any variable name used should have a value before the expression is encountered. For
example, continuing with the previous DATA statement, one could write:

M3 .PARM1=M1.PARM1*M2.PARM2;

2.11 SWITCH STATEMENT

The SWITCH statement is used to define various controlling parameters
whenever the equation solvers or optimizers are used (i.e., whenever VARY has been
specified). The form of the statement is as follows:

SWITCH MAXIT=value DEL=value ACC=value PRINT=value

where '"value" is a number representing the value of the preceding parameter, MAXIT is
the maximum allowable number of iterations that may be performed within this loop,
ACC is the termination criterion, DEL is a value used to determine perturbations of the
independent variables, and PRINT is a print switch used to obtain output from the
equation solvers and optimizers.

23

2.12 PLI STATEMENT

The PLI statement is used to code PL/I statements within the STRUCT file. The
PLI key word should appear before any such statements are listed. All PL/I statements
should be terminated by a semicolon. SALT stores PL/I statements internally as
character strings of finite length; no PL/I statements should contain strings of nonblank
characters longer than about 50 characters. Any other SALT key word will terminate the
insertion of PL/I statements, so the use of SALT key words within PL/I comments should
be avoided.

24

3 MODELS

3.1 MODEL AND FLOW VARIABLES

In general, each model within the system has associated with it a PL/I structure
variable containing not only the input parameters of the model, but also all of the output
parameters and saved values of the flows processed by the model. The flows are also
defined by PL/I structure variables containing the various parameters associated with the
flows.

It is not entirely necessary to know the structure of the flow variables in order to
use the SALT code, but it is useful to have some idea of what variables are carried along
with the flow. The gas flow (GAS), a typical flow variable, is defined by the following
PL/I structure:

1 cAS,
2 NAME CHAR(16),
2 ID CHAR(4),
2 ATOM(8) FLOAT(16),
2 PROP,
3 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(16),
2 COMP,
3 (XAR,XCH4,XCO,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2,
X0, XOH,X02,XS02, XHCL,XCH30H, XC,XCOS,XNH3,XS,XCL) FLOAT(16),
2 soL,
3 WTF FLOAT(16),

In this structure, NAME is a character string containing the name of the flow as used
within the SALT input. The ID character string is used to define the type of properties
code used with the flow. The substructure PROP contains the variables defining the
thermodynamic conditions of the flow. The individual elements of PROP -- TEMP,
PRES, ENTH, ENTP, QUAL, RHO, VEL, and MASS -- are the flow's temperature,
pressure, enthalpy, entropy, quality, density, velocity, and mass flow rate, respectively.*
ATOM(8) represents the atomic weight fractions of the flow constituents -- argon,
carbon, hydrogen, potassium, nitrogen, oxygen, sulfur, and chlorine. The substructure
COMP is used to hold the molar fractions of the individual species in the flow. Thus,
XAR represents the molar fraction of Ar, XCH4 represents the molar fraction of CH,,
and so on. The solids weight fraction entrained in the flow is represented by SOL.WTF.

Not all of the variables listed here are used with all flows. Thus, if the value
assigned to ID is "GAS," then all variables within the flow are used; however, if ID is
""H20," only the information within the PROP substructure is used.

The form of the flow structure is not dictated by the SALT code but by the
developer of the models. In general, SALT can handle any type of flow structure.

*In general, SI units are used for all quantities associated with SALT models; pressure,
however, is measured in atmospheres. See App. C for further details.

25

As an example of a typical model PL/I structure, the gas-turbine (GT) model
structure takes the form:

1 GT BASED(GT P),
2 NAME CHAR(16),
2.FLC;
3 FNAME CHAR(16),
ID CHAR(4),
ATOM(8) FLOAT(16),
PROP,
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(16),
3 comp,
4 (XAR,XCH4,XCO,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2,
X0,XOH,X02,XS02 ,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOAT(16),
3 soL,
4 WTF FLOAT(16),
2 PARM,
DDNAME CHAR(7),
MODE CHAR(10),
EFFICIENCY FLOAT(16),
MECH_EFF FLOAT(16),
EXIT_PRES FLOAT(16),
MASS_FACT FLOAT(16),
M_FACT FLOAT(16),
PRDES FLOAT(16),
PRES_RATIO FLOAT(16),
INIT BIT(1),
2 POWER,
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOAT(16),
2 PRATIO,
3 PTR POINTER,
2 COST FLOAT(16);

www

WWwWWwuwuwuwuwwww

Each variable within such a structure is referenced by adjoining the higher-level
structure names. Thus, the exit pressure of the gas turbine, denoted as EXIT PRES, is
designated by GT.PARM.EXIT PRES. (Intermediate-level names may be omitted if the
resulting name is unambiguous.)

In general, the PARM substructure of any model represents all of the inputs to
the model (excluding the flows). The PARM substructure is different for each model. In
addition to the input parameters, the PARM substructure may also contain various output
parameters that are calculated by the model. Other output parameters may be put into
other substructures, which may be of similar form for all models. For example, the
POWER substructures of all models are of the same form; this common form permits
these substructures to be operated on in the same way for each model, as in summing up
the POWER structures to determine plant power.

The flows processed by a model represent some of the most important outputs
from the model, so most of the flows (on leaving the model) are saved in model
substructures. These substructures, at least for the flows structurally similar to GAS,
are denoted as "FL" followed by the entry name used to process the flow; if the entry
processes more than one flow, an additional designator follows the entry name. For

26

instance, the heat-exchanger model (HX) has two flow substructures, saving the hot and
cold flow streams from the model. The hot stream, processed by the "H" entry to the
model, is saved in the substructure named "FLH;" the cold flow, processed by the "CP
entry, is saved in "FLC." In this case, because each entry only processes one flow, no
additional designations after the entry name are needed. The feedwater-heater model
(FH) also has a hot ("H") and a cold ("C") entry point. The hot entry processes two flows,
which are saved in the substructures FLH1 and FLH2. After a model has performed its
calculations, the exit flow conditions (temperature, pressure, etc.) can always be
referred to using these variables (FLH, FLC, ete.). Thus, the value of the exit
temperature from GT 1 is contained in GT 1.FLC.TEMP.

Before any model is called (i.e., specified in a PROCESS statement), each of its
input variables must have a value assigned to it. These assignments may be done in three
different ways. The first way is to use the initial attribute, giving the variables a default
value; this is accomplished within the INTF file and is described later. (Most of the input
variables have some input default value.) The second way of assigning input values is to
use one of the SALT language statements (e.g., VARY, SWEEP, or PLI assignment
statements). Thus, one could write

PLI ST 1.PARM.EXIT_PRES=10;

to assign a value of 10 atm to the gas-turbine exit pressure. The third way is to use the
DATA statement, as in the following:

DATA ST_l.PARM.EXIT_PRES=10.;

3.2 INITIALIZATION OF PROPERTIES CALCULATIONS

Most of the models process one or more fluid flows and are thereby required to
perform calculations of thermodynamic or transport properties. Although detailed
knowledge of these property-calculation procedures is not necessary, the user of the
SALT code does need to know how to initialize these procedures. This is done by calling
the "IN" entry in the general properties model (GP), using the following PROCESS
statement:

PROCESS GP_1:IN

This entry does not require any flows and should be specified before any other model is
called. It will read one or more data files, depending on the options specified in the GP
model's parameters, so it should not usually be included within any iterative tasks.

At present, steam and water properties are calculated by a procedure similar to
that of the WASP code from the NASA-Lewis research center. Additionally, a very fast
cubic B-spline fit of the steam properties is available for use in dynamic-system runs.
Combustion-gas properties and equilibrium compositions are calculated by minimizing
the Gibbs free-energy function. The GAS properties code, at present, handles only 23
chemical species - Ar, CHy, CO, COq, H, Hy, HyO, H,S, K, KOH, NO, Ny, O, OH, O,
80, CH3OH, HCl, C, COS, NH,4, S, and Cl. A generic condensible-pure-substance

a7

properties code is also available that can individually handle more than 400 different
chemical species (chiefly light hydrocarbons). This procedure is based on the Lee-Kesler
equation of state. Some special procedures are provided for handling liquid-metal
properties. (Not all properties codes are, at present, available for use with all models.)
All of the codes have been designed to interact with the component models by means of a
common calling sequence (i.e., by calling GP) in order to make the future expansion of
the code easier.

The actual properties procedure used by any flow is determined by the flow's
ID. This ID value is one of the parameters of the flow (provided the flow is of the GAS
type) and is initially assigned a value, like all the parameters of the flow, using the flow
initiator model (see Sec. 4.2.7). If ID is assigned the value "GAS," the gas properties
code is used with the flow. If ID is assigned the value "H20," then the steam-water
procedure is used. If ID equals "THR," "JAN," or "LIQ," then the condensible-fluids code,
the special code for handling single-species gases, or the special single-phase liquid code,
respectively, is called. These last three codes may handle more than one type of fluid, so
the name of the fluid is added to the ID string after "THR," "JAN," or "LIQ." For
example, to use the liquid code for sodium, the ID would be "LIQ NA." The actual fluid
names that can be used with each code are listed in the appendix. (A chemical-
equilibrium property routine for solutions is also a part of SALT, but the routine is not
available in the present version of the code.)

3.3 DEMAND-TYPE MODELS

Some of the models developed require certain conditions to be met within the
model that really put demands not on the input parameter of that model, but rather on
input flow conditions beyond the model's control. The steam-drum model, for instance, is
designed to work only with an input flow of a specified quality. The steam-drum model
itself cannot simply alter its input flow, because the flow originates somewhere upstream
of the drum. .

Demand-type models are developed whenever a real physical device actually
creates or changes conditions upstream of itself. They may also be developed to improve
computational robustness or efficiency when analyzing the system; the demand-type
steam drum was, in fact, developed for this latter reason. The demand-type steam-drum
model generates two saturated flows -- a liquid and a steam flow -- for whatever input
flow exists, even if it is subcooled. In this way, there will always be a nonzero steam
flow for use in any turbine train. The constraint on the inlet enthalpy to the drum,
necessary to provide these two flows, is established using the SALT language.

Some demand-type models exist only in certain modes of operation. For
example, the heat-exchanger model, in the off-design mode, is a demand-type model.
The model calculates a heat-transfer surface area for any input flow conditions. In the
off-design mode, this area may not be equal to the actual value of the heat-transfer
surface; if it is not, the heat load must be varied until the calculated area is equal to the
actual area. This demand constraint cannot be established within the heat-exchanger
model, because the model was set up to process the hot and cold flows at different stages
in the analysis.

28

In general, these model demand constraints can be established in more than one
way; it is up to the SALT user to decide how they will be met. For convenience, most of
the constraints are evaluated within the model and assigned to the model parameter,
denoted CONS. Thus, the difference between the steam-drum input enthalpy and that
required by the model is denoted CONS. In this way, the constraints can be more easily
set up within the SALT input.

3.4 FLOWS USED IN STEADY-STATE MODELS

As was indicated in Sec. 3.1, within the SALT code a flow is actually just a PL/I
structure variable. At present, two main flow types -- GAS and FUEL -- are available
for use with steady-state models. The GAS structure has already been shown in Sec. 3.1;
this generic type is used for many different flows. Three other flows are provided --
STM, AIR, and LIQ -- that are structurally exactly the same as GAS (i.e., they are of the
same generic type). These additional flows are provided for the sake of clarity within
the SALT inputs when referring to the flows. For example, the heat-exchanger model
(which actually requires flows of the generic type of GAS) may process a STM flow on its
hot side and an AIR flow on its cold side.

The other flow type, FUEL, is used to represent a fuel flow and has the following
PL/I structure:

1 FUEL,
2 NAME CHAR(16),
2 PROP,
3 (TEMP,MASS,HHV) FLOAT(16),
2 WEIGHTS,
3 (c,H,0,N,S,CL,H20,ASH) FLOAT(16);

where NAME represents the name of the flow as it is used within the SALT inputs, PROP
is a substructure containing the elements, TEMP represents the flow's temperature,
MASS is the mass flow rate, and HHV is the higher heating value. The substructure
WEIGHTS is used to hold the weight fractions of carbon (C), hydrogen (H), oxygen (O),
nitrogen (N), sulfur (8), chlorine (CL), water (H20), and ash (ASH).

29

4 STEADY-STATE MODELS

All of the models used by SALT are compiled into run-time libraries that are
searched (during a linking step) to include within the analysis only those models actually
used in the system. In general, it is possible to have more than one library of models;
different libraries may or may not be compatible in terms of the model names included
and the flow types processed. Thus, for example, two different libraries could be
generated with two different IN models to initiate two different flow types. In this case,
the two different model libraries (and their corresponding interface files; see Sec. 7.1)
should not be concatenated or used together at run time. At present, the models used in
analyses of purely steady-state systems are included in one library, while those used in
analyses of dynamic systems are included in another library.

The models described in this chapter are the most basic ones available within the
SALT model libraries.* These models were developed for use in fossil-energy, open-cycle
magnetohydrodynamic (MHD), fuel-cell, liquid-metal MHD, ocean thermal-energy
conversion (OTEC), and other power plants where the most prominent flow type is GAS
(of course, as indicated in Sec. 3.4, LIQ, AIR, or STM may be used instead). Most of
these models process one or more flows of this type.

4.1 GENERIC COMBUSTOR/GASIFIER MODEL

The CB model, representing a generic combustor, requires three flows; the first
two are inputs and the third is an output. The first flow represents the fuel input and is
of the generic type FUEL. The second flow represents any oxidizing flow, while the third
represents the combustion-gas output; these latter two flows are of the generic type
GAS. The CB model, as a generic combustor, can also model a gasifier, where the output
gas-flow conditions are at chemical equilibrium. Options are also provided for ash
removal and potassium injection (used for MHD systems).

The parameters of the CB model are as follows:

HEAT LOSS FRAC -- Specified fraction of the thermal input (based on the
higher heating value of the fuel) lost from the combustor due to heat loss.

FUEL M -- Calculated value of the fuel mass after any ash removal.

FUEL_HHV -- Corrected higher heating value of the fuel after any ash
removal.

ASH M -- Calculated amount of mass removed from the fuel as ash.

*Further information on these models and their use, including declaration structures, is
available in the authors' companion volume to the present report, The Systems Analysis
Language Translator (SALT): Programmer’'s Guide, Argonne National Laboratory Report
ANL/FE-85-04 (March 1985).

30

ASH M FUEL -- Calculated amount of mass left in the fuel as ash.

ASH DET -- Specified weight fraction of the ash within the fuel after any ash
rejection.

FUEL HEAT FORM -- Heat of formation of the fuel at a pressure of 1 atm
and a temperature of 298.16 K.

H20 M FUEL -- Calculated amount of water left in the fuel.

SLURRY CONC -- Calculated weight fraction of solid fuel to total weight of
fuel (useful when CB is modeling a gasifier).

CARBON BURNOUT -- Specified fraction of the carbon in the fuel that is
actually burned; the rest of the carbon is carried over with any ash carry-over.

K MASS -- Calculated weight of potassium in the output gas flow.

K FRAC -- Specified weight fraction of potassium in the output gas flow (used
to model potassium seed injection in MHD systems).

OX M -- Calculated mass of oxygen needed for stoichiometric combustion of
the fuel.

STOICH -- Caleculated fraction of the mass of total oxygen in oxidizer flow to
the mass, OX M.

PRES DROP_FRAC -- Specified fraction of the input oxidizer pressure
representing the pressure drop through the combustor.

BC(8),BO(8),BG(8) -- Calculated elemental mass fractions for the fuel,
oxidizer, and output gas flows, respectively.

4.2 GENERIC SYSTEM-COMPONENT MODELS

4.2.1 Compressor Model

The compressor model (CP) requires one pass-through flow of the generic type of
GAS. A simplified off-design option is also provided. In the design mode, the model
obtains the exit flow conditions by calculating an isentropic compression to a specified
exit pressure and then corrects for a specified isentropic efficiency. In off-design use, a
nondimensional mass factor is also calculated.

In the off-design mode, the model requires an initializing call to CPIN to obtain a
table of pressure ratios vs. the mass factor (normalized by the design-point mass
factor). During flow processing, the model then uses this table to calculate (based on the

31

inlet mass factor) the pressure ratio and, hence, the exit pressure. The model then
proceeds as in the design mode.

The parameters of the CP model are as follows:

DDNAME -- Character string representing the file name of the off-
design pressure-ratio-vs.-mass-factor table. This variable is not needed
in the design mode. The information in this file consists of (1) an
integer specifying the number of pressure-ratio values, followed by (2)
the list of pressure-ratio values and by (3) the list of normalized mass-
factor values.

MODE -- Character string representing mode, either "DESIGN" or
"OFF-DESIGN."

EXIT PRES -- Specified exit pressure for the design mode.

EFFICIENCY -- Specified isentropic efficiency of the compression
process.

MASS FACT -- Calculated mass factor for use in off-design calcula-
tions. This factor is an output in the design mode, but it must be an
input in the off-design mode.

M _FACT -- Calculated value of the normalized mass factor used in off-
design calculations. This variable is assigned the value 1 at the design
point.

PRES RATIO -- Calculated pressure ratio across the compressor.

4.2.2 Deaerator Model

The deaerator model (DEAR) requires two steam flows, the first of which is a
pass-through flow representing not only one of the input flows, but also the output flow
from the model. The DEAR model is a demand-type model, requiring that the exit flow
be saturated.

The only parameter of the DEAR model is QUAL, the output flow quality from
the model. For proper modeling of a deaerator, this parameter should be made to equal
zero by imposing some system constraint.

4.2.3 Flash Model

This model (FLSH) represents a flash tank i which the entering flow is
isenthalpically expanded through a given pressure drop. The model requires two flows;
the first represents the incoming fluid (on input) or the vapor phase of the flash (on
output). The second flow (an output flow) represents the liquid phase of the flash.

32

The parameters of the FLSH model are as follows:
PRES DROP -- Specified pressure drop through the device.

QUAL -- Calculated quality of the input flow.

4.2.4 Feedwater-Heater Model

The closed feedwater heater modeled by FH incorporates desuperheating,
condensing, and drain-cooling zones. The model is set up to process the hot flows --
extracted from the turbine and from higher-pressure feedwater heaters -- in one entry
and the cold feedwater flow in another. The hot-flow entry (FHH) requires one pass-
through flow (representing the turbine extraction flow on input and the drain-cooler exit
flow on output) and one input flow (representing any cascaded flow from a higher-
pressure feedwater heater). This hot-flow entry must be called before the cold flow
entry (FHC), which requires one pass-through flow. All of the flows used within the FH
model are of the generic type STM.

The parameters of the FH model are as follows:

SUBCOOL -- Specified amount of subecooling of the drain-cooler exit
flow.

HEAT -- Calculated total amount of heat transferred from the hot
flows to the cold flow.

AREA -- Calculated total surface area of the desuperheating and
condensing regions of the feedwater heater.

TTD -- Calculated terminal temperature difference, defined as the
difference in temperature between the hot-flow exit temperature from
the condensing region and the cold-flow exit temperature from the
desuperheating region.

TSAT -- Calculated hot-flow saturation temperature at the pressure
within the condensing region.

FW_VEL -- Specified velocity of the cold feedwater flow through the
condensing region.

DCTD -- Calculated drain-cooler temperature difference, defined as
the temperature difference between the hot-flow exit temperature
from the heater and the cold-flow entrance temperature.

HDP -- Specified flow pressure-drop fraction. (The pressure drop is
equal to this parameter times the input pressure.)

33

CDP(3) -- Specified array of cold-flow pressure-drop fractions through
the desuperheating section, CDP(1); the condensing section, CDP(2);
and the drain-cooler section, CDP(3).

A(3) -- Calculated array of heat-transfer-surface areas for the
individual feedwater-heater regions: desuperheater, 1; condenser, 2;
and drain cooler, 3.

Q(3) -- Calculated array of heat-transfer values for the three regions of
the heater.

U(3) - Calculated array of heat-transfer coefficients for the three
regions of the heater.

LMTD(3) -- Calculated array of log mean temperature differences for
the three sections of the heater.

HTEMP(4) -- Calculated end-point temperatures of the hot flow
between the three regions of the heater, where HTEMP(1) is the inlet
temperature and HTEMP(4) is the exit temperature from the heater.
Because HTEMP(2) and HTEMP(3) represent the hot-flow condensing-
region temperatures, these two temperatures are both equal to the
saturation temperature.

CTEMP(4) —- Calculated cold-flow temperatures between the three
regions of the heater, where CTEMP(1) is the exit temperature and
CTEMP(4) is the cold-flow inlet temperature.

4.2.5 Heater Model .

The heater model (HT) requires one pass-through flow of the generic type GAS.
The parameters of the model are as follows:

HEAT -- Specified heat added to the flow.

T_SET -- Specified exit temperature of the flow if set to a number
greater than zero. This exit temperature determines the value of
HEAT; if T SET is set to zero, then HEAT must be input.

PRES_DROP_FRAC -- Fraction of the input flow pressure used as a
pressure drop through the heater.

4.2.6 Heat-Exchanger Model

The heat-exchanger model (HX) is set up to process the hot flow in one entry
(HXH) and the cold flow in another entry (HXC). Both entries require one pass-through
flow of the generic type GAS. Either entry may be called first.

34

The model also includes options for calculating heat-transfer-surface areas using
specified heat-transfer coefficients. These coefficients can be adjusted as functions of
mass flow rate or temperature to simulate off-design changes. Thus, the model can be
run off-design, but the surface areas (as calculated in the code) must be constrained to
their design values outside the model (see CONS, below).

The parameters of the HX model are as follows:

MODE -- Specified character string taking the values of "DESIGN" or
"OFF-DESIGN."

TYPE -- Specified character string taking the values "PARALLEL" or
"COUNTER" to indicate that the heat exchanger is of either a parallel-
flow or counter-flow configuration.

HEAT -- Specified heat transfer from the hot to the cold fluid (may be
overridden if T SET is set).

HEAT FLUX -- Calculated average heat flux in the exchanger.

T_SET(2) -- An array of exit-temperature values; the first element is
for the hot flow, the second, for the cold flow. Only one of these
elements should be assigned a value (their default value is zero), and
that one must correspond to the entry that is called first. If either
element is assigned a value, then the heat transferred is calculated
from the T_SET value rather than from the value set in HEAT; T SET
should be used only if the flow being assigned an exit temperature is
definitely not in the two-phase region.

PRES_DROP_FRAC(2) -- Specified array of the fraction of input flow
pressure used as a pressure drop through the device: hot flow, 1 and
cold flow, 2.

U -- Calculated overall heat-transfer coefficient from the hot to the
cold fluids.

AREA -- Total heat-transfer area, calculated in the design mode and
specified in the off-design mode (however, see CONS).

INTEMP(2) -- Storage for the inlet fluid temperatures.

AVGTEMP(2) -- Calculated average temperatures of the hot and cold
fluids.

ST(2) -- Calculated surface temperatures between the fluids and the
wall.

LMTD -- Calculated log mean temperature difference between the
fluids.

35

UR(3) -- Specified array of heat-transfer coefficients for hot fluid to
wall (1), wall to cold fluid (2), and through wall (3).

UC(2) -- Specified array of correction factors for the UR(1) and UR(2)
values in the off-design mode. If a value of UC exceeds 100, then the
value of UR _is adjusted as UR.-(UC/AVG'I‘EMI-‘)3 or else as
UR-(DM/MASS)UC, where MASS is the fluid-mass flow rate and DM is
defined below. These parameters are used only in the off-design mode.

DM(2) -- Specified input values of the design mass flow rates (used only
in the off-design mode, to correct the heat-transfer coefficients).

CONS -- Calculated off-design parameter representing the difference
between the calculated and specified surface areas. In the off-design
mode, this variable must be constrained to equal zero if the model is to
yield the correct results.

PINCH _POINT -- Specified parameter representing the minimum value
of the MEAN TDIF for which no error message indicating occurrence of
a pinch-point violation is printed.

CAL(2) -- "Flags" used by the code to indicate when both hot and cold
entries have been called and, thus, when the surface areas are to be
calculated.

4.2.7 Flow-Initiator Model

The flow-initiator model (IN) requires one pass-through flow of the generic type
GAS. The IN model also has two additional GAS flow-‘processing entries, INCYCL and
INCOMP. The INCYCL entry calculates the differences in temperature, pressure, etc. of
the flow between this entry and that of the INC entry. This entry is useful in setting up
recycle loops.

The INCOMP entry is used to feed back to the INC entry the values of the
INCOMP entry's GAS flow compositions. By calling this entry with the parameter ITER
(incremented by one for each call), INCOMP will take its input flow composition and
assign it to the model's COMP parameter. In this way, a simple fixed-point iteration
scheme can be set up to converge on gas compositions in recycle loops by sweeping ITER
from one to some maximum iteration number and by calling INC at the beginning of the
loop and INCOMP at the end of the loop.

The parameters of the IN model are as follows:

ID -- Specified character-string variable representing the type of
property code used in calculating thermodynamic properties of the
flow.

36

ATOM(8) -- Calculated array of atomic-weight fractions of elements of
the flow, if the ID is set to GAS.

T -- Specified temperature of the flow. If T is set to zero, the flow is
assumed to be a condensible fluid and the saturation temperature is
used. In this case, the enthalpy of the flow is determined using Q.

P -- Specified pressure of the flow.
H -- Calculated enthalpy of the flow.
S -- Calculated entropy of the flow.

Q -- Specified quality of the flow, used when T is set to zero. Flow
quality Q may be greater than one (to represent superheating) or less
than 0 (to represent subcooling).

V -- Specified velocity of the flow.
M -- Specified mass flow rate of the flow.

COMP -- Specified structure variable defining the molar fractions of
the separate species that may be used with the GAS property code.
The molar fraction of each species is specified as "X" followed by the
species' chemical formula (e.g., XH2, XCO2, XNH3).

SOL -- Structure variable representing the weight fractions of
entrained solids within the gas flow. At present, SOL has only a single
scalar (WTF) within its structure. This WTF represents the fraction of
the flow's mass flow rate that is solid.

DT, DP, DV, DH, DM -- Calculated differences in T, P, V, H, and M
between the flow originating from the INC entry and the flow entering
the INCYCL entry.

ACC -- Termination criterion employed when the INCOMP entry and a
SALT-defined parameter sweep over ITER are used to close a recycle
loop over compositions. If the maximum difference in species
concentrations between the INC and INCOMP entries is less than ACC,
then ITER is set to 1000.

ITER -- Iteration counter used in the INCOMP entry.

ITERS -- Saved previous value of ITER.

PRINT -- Print switch used in the INCOMP entry.

37

4.2.8 Flow-Mixer Model

The flow-mixer model (MX) requires two flows. The first is a pass-through flow,
representing one of the two input flows and also the output flow. The second flow is the
second input flow. Both of these flows are of the generic type GAS.

The model does not require any parameters.

4.2.9 Steam-Condenser Model

Any of the condensible fluids (in addition to steam) may be used with the steam-
condenser model (SC). The model requires only one pass-through flow, representing both
the input flow and the condensed output flow. This flow is of the generic type STM. The
energy extracted by the condensing process is saved in the POWER substructure.

The only parameter of the SC model is EXIT PRES, the specified exit pressure of
the model. If EXIT PRES is set to zero, then the exit pressure is assumed to be equal to
the inlet pressure.

4.2.10 Steam-Drum Model

The steam-drum model (SD) requires two flows, both of the generic type STM.
The first is a pass-through flow, representing the two-phase input flow and, as an output,
the downcomer flow. The second flow is an output flow, representing the saturated-
steam flow. The model is a demand-type model; the input flow must be of a specified
steam quality.

The parameters of the SD model are as follows:
QUAL -- Specified steam quality of the input flow.

CONS -- Difference between the enthalpy of the incoming flow and
that required by the specified steam quality. This parameter is
calculated by the model to aid in obtaining the correct input steam
quality. Thus, CONS should be constrained to equal zero outside the
model.

4.2.11 Flow-Splitter Model

The flow-splitter model (SP) requires one pass-through flow, representing the
input flow and (on output) one of the two output flows. A second flow to the model
represents the second output flow. Both of these flows are of the generic type GAS. The
SP model provides options for splitting the flow not only by mass, but also by
composition. Thus, the SP model can be used to model processes that split off specific
species of the input flow.

38

The parameters of the SP model are as follows:

SPLIT RATIO -- Specified fraction of the input flow mass split off into
the second flow. If SPLIT RATIO is set, then SR (see below) should not
be used.

SPLIT_MASS -- Specified portion of mass flow rate split off into the
second flow, if set greater than zero. If this variable is set to
zero, then the mass flow rate split off is defined by SPLIT_RATIO.
SPLIT MASS must be less than the mass flow rate of the input flow.

SR -- Specified structure variable representing the split ratios by
weight fractions of the species flow rates split off into the second
flow. The elements of this structure are the same as those of the
COMP substructure within the generic GAS flow, but without the "X"
prefix (e.g., AR, CH4, 02, SO2). If the SR structure is specified, then
the mass flow rate of the second flow is determined by the sum of the
flow rates of the individual species. SR should not be specified if
SPLIT RATIO is used.

4.2.12 Pump Model

The pump modeled by PUMP handles liquids and requires one pass-through flow
of the generic type LIQ. Rather than modeling the exact energy changes through the
pump by iterating over the property procedures, PUMP uses an approximation. It
calculates the power required as the change in pressure, divided by the density, times the
efficiency. The exit enthalpy of the flow is obtained by adding this required power to the
inlet flow enthalpy.

The parameters of the PUMP model are as follows:

EXIT PRES -- Specified exit pressure of the flow.

EFFICIENCY -- Specified efficiency of the pump compression.

4.2.13 Fuel-Flow-Initiator Model

The fuel-flow-initiator model (INF) requires one pass-through flow of the generic
type FUEL. The parameters of the INF model are as follows:

T -- Specified temperature of the fuel.
M -- Specified mass flow rate of the fuel.

HHV -- Specified higher heating value of the fuel.

WEIGHTS -- Structured variable representing the fuel composition by
weight fractions. The WEIGHTS structure includes the following
variables, where each variable represents the weight fraction of the
substance in parentheses: C (carbon), H (hydrogen), O (oxygen), N
(nitrogen), S (sulfur), Cl (chlorine), H20 (water), and ASH (ash).

4.2.14 Fuel-Dryer Model

The fuel-dryer model (DRY) has two flow-processing entry points, DRYC and
DRYH. The DRYC entry, which processes the fuel input and requires a pass-through
flow of the generic type FUEL, performs the calculations involved in drying the fuel to a
specified water fraction and calculates the heat energy required to vaporize the removed
water. This entry must be called before the DRYH entry, which processes the hot-gas
drying flow and should be of the generic type GAS.

The parameters of the DRY model are as follows:
H20 DET -- Specified weight fraction of water in the dryed fuel.
H20 M -- Calculated mass of water removed from the fuel.

HEAT REQUIRED -- Calculated energy required to vaporize the water
mass removed.

4.2.15 Nozzle Model

The gas-nozzle model (NZ) requires one pass-through flow of the generic type
GAS. The parameters of the NZ model are as follows:

EFFICIENCY -- Specified efficiency of the nozzle expansion, defined

as the isentropic pressure drop necessary to accelerate the flow to the

specified exit velocity, divided by the actual pressure drop.

EXIT VEL -- Specified exit velocity of the gas flow.
PRINT -- Specified print switeh; if set to a number greater than zero,

this switech will print out the iterations within the model used in
obtaining the isentropic exit pressure.

4.2.16 Diffuser Model

The gas-diffuser model (DF) requires one pass-through flow of the generic type
GAS. The parameters of the DF model are as follows:

EXIT VEL -- Specified exit velocity of the gas flow.

40

PRES RECOVERY_COEF -- Specified value of the pressure-recovery
coefficient, defined as the actual pressure drop across the diffuser
divided by the difference in the total static pressure at the diffuser
inlet.

PRINT -- Specified print switch; if set to a number greater than zero,
this switch will print out the iterations within the model used in
calculating the total inlet pressure.

4.2.17 Stack Model

The stack model (SK) requires one pass-through flow of the generic type GAS.
The parameters of the SK model are as follows:

A TEMP -- Specified ambient temperature at the stack exit.

A PRES -- Specified ambient pressure at the stack exit.

4.3 TURBINE MODELS

4.3.1 Steam-Turbine Model

The steam-turbine model (ST) provides options for modeling a typical extraction
stage, as well as inlet and exhaust stages. The model requires one pass-through flow and
one output flow, representing any extracted flow from the turbine stage. This extracted
flow is at the same thermodynamic conditions as the pass-through flow. Thus, the
extracted flow is extracted at the exit of the turbine stage. Turbine trains with multiple
extraction points would be modeled using multiple ST models. Both of the flows to the
ST model are of the generic type STM.

The model provides for an off-design mode by calculating a flow factor in the
design mode that is then used in the off-design mode. This flow factor represents a
nondimensional flow rate that the turbine stage can pass. In the off-design mode, the
parameter CONS (based on this flow factor) should be constrained to equal zero.

Tables of exhaust-loss enthalpy corrections for use in the exhaust stage may be
read in by calling STIN. These tables define the value of the exhaust-loss enthalpy vs.
the turbine inlet mass, normalized by dividing by a design-point mass. This exhaust-loss
enthalpy is then added to the exit flow enthalpy from the turbine. (In design-mode
calculations, this design-point mass flow rate is assigned the value of the inlet mass.)

For the inlet turbine stage in the design-mode, the exit pressure is calculated to
give a required steam flow velocity. This required velocity is obtained from a specified
turbine-wheel speed and a specified wheel-to-flow-velocity ratio. The efficiency is also
calculated as a function of this wheel-to-flow-velocity ratio for both the design and off-
design modes.

41

The parameters of the ST model are as follows:

DDNAME -- Specified character string representing the file name that
STIN will read to obtain the table of exhaust-loss enthalpies.

MODE -- Specified character string representing either "OFF-DESIGN"
or "DESIGN." In modeling throttle stages, the characters "IN" may also
be appended to the end of the MODE string.

EXIT PRES -- Specified exit pressure of the turbine.
EFFICIENCY -- Specified efficiency of the turbine expansion.

MECH__EFF -- Mechanical efficiency of the turbine. Any
thermodynamic energy extracted from the turbine is multiplied by this
efficiency to obtain the usable power.

SR -- Specified split ratio of the extracted flow. The mass flow rate of
the extracted flow is equal to SR times the input mass flow rate.

EXT_MASS -- Specified extracted mass flow rate. If EXT_MASS is
specified, it overrides SR. (EXT_MASS should be less than the inlet
mass flow rate.)

FLOW_FACT - Flow factor, calculated in the design mode and
specified in the off-design mode.

EXHAUST LOSS -- Specified or calculated value of the exhaust-loss
enthalpy. If STIN has been called, this value is obtained from the
tables; otherwise, the value may be specified as an input.

DM -- Specified value of the design-point mass flow rate in the off-
design mode. In the design mode, this parameter is set equal to the
rate of inlet mass flow to the turbine.

WV -- Specified turbine wheel-to-flow-velocity ratio, used only in the
turbine-inlet stage.

WHEEL_SPEED -- Specified turbine-wheel speed, used only in the
turbine-inlet stage.

CONS -- Calculated parameter in the off-design mode, representing a
measure of the mass flow rate that the turbine stage can pass for the
various inlet conditions. This parameter should be constrained to equal
zero during off-design calculations.

VOL FLOW_RATE -- Calculated volume flow rate through the turbine.

42

PRINT -- Specified switch used to print out iterations in the turbine-
inlet-stage option during the calculation of exit pressure.

4.3.2 Gas-Turbine Model

The gas-turbine model (GT) requires one pass-through flow of the generic type
GAS. A simplified off-design mode is also provided.

In the design mode, the exit flow conditions are calculated by means of an
isentropic expansion to the specified exit pressure. The exit enthalpy is adjusted using
the specified isentropic efficiency. A nondimensional mass factor is then calculated for
use in off-design calculations.

In the off-design mode, an initial call to GTIN must be made to obtain a table of
pressure ratios vs. normalized mass factors. This table is used during flow processing to
obtain the pressure ratio for the calculated normalized mass factor. The exit flow
conditions are then calculated by an expansion through this pressure ratio with the
specified isentropic efficiency.

The parameters of the GT model are as follows:

DDNAME -- Specified character string representing the name of the
file that contains the off-design pressure-ratio table (needed only in the
off-design mode). Information contained in this file is in the following
order: (1) an integer representing the number of pressure-ratio values,
(2) the list of pressure ratios, and (3) the list of normalized mass
factors.

MODE -- Specified character string taking the values of "DESIGN" or
"OFF-DESIGN."

EFFICIENCY -- Specified isentropic efficiency of the turbine
expansion.

MECH_EFF -- Specified mechanical efficiency; any thermal energy
extracted through the turbine expansion is multiplied by this efficiency
to obtain the useful mechanical-power output.

EXIT_PRES -- Specified design-point exit pressure (an output from the
model in the off-design mode).

MASS FACT -- Nondimeqsi~n U nass factor calculated in the design
mode and specified in the oft-design mode.

M_FACT -- Calculated nondimensional mass factor normalized by
dividing by the design-point mass factor.

43

PRDES -- Design-point pressure ratio calculated in the design mode and
specified in the off-design mode.

PRES RATIO -- Calculated pressure ratio across the turbine.

INIT - A "flag" used by the code to initiate a reevaluation of the
design-point mass factor on first entry to the model during the off-
design mode. The design-point pressure ratio may not be at the
maximum pressure ratio specified in the off-design pressure-ratio

table; therefore, the design-point mass factor is adjusted to reflect
what it would be at the maximum ratio in the table.

4.4 FUEL-CELL MODELS

4.4.1 Molten-Carbonate Fuel-Cell Model

The molten-carbonate fuel-cell model (MCFC) requires two pass-through flows of
the generic type GAS. The first of these is the anode flow; the second, the cathode flow.

The parameters of the MCFC model are as follows:
CELL_CURRENT -- Specified current through each cell.

CELL VOLTAGE -- Calculated cell voltage.

CELL TEMP -- Specified average temperature of a cell.

STACK VOLTAGE - Calculated total voltage across the cell stack.
NO _OF CELLS -- Specified total number of cells in the stack.

DELTA_VOLT -- Specified difference between the Nernst potential at
the fuel cell exit and the cell voltage.

FUEL _UTIL -- Calculated value of the fuel utilization.

02 _UTIL -- Calculated value of the O, utilization.

CO2_UTIL -- Calculated value of the COq utilization.

HF -- Calculated value of the overall isothermal heat of reaction.

E -- Calculated Nernst potential at the fuel-cell exit.

44

4.4.2 Solid-Oxide Fuel-Cell Model

The solid-oxide fuel-cell model (SOFC) requires two flows, both of the generic

type GAS. The first flow represents the anode flow; the second, the cathode flow.

The parameters of the SOFC model are as follows:

CELL CURRENT -- Specified current through each cell.

CELL VOLTAGE -- Calculated cell voltage.

CELL TEMP -- Specified average temperature of a cell.

STACK VOLTAGE -- Calculated total voltage across the cell stack.
NO OF CELLS -- Specified total number of cells in the stack.

DELTA_VOLT -- Specified difference between the Nernst potential at
the fuel-cell exit and the cell voltage.

FUEL UTIL -- Calculated value of the fuel utilization.
02_UTIL -- Calculated value of the O, utilization.
HF -- Calculated value of the overall isothermal heat of reaction.

E -- Calculated Nernst potential at the fuel-cell exit.

4.4.3 Phosphoric Acid Fuel-Cell Model

The phosphoric acid fuel-cell model (PAFC) requires two flows, both of the

generic type GAS. The first flow represents the anode flow; the second, the cathode

flow.

The parameters of the PAFC model are as follows:

CELL CURRENT -- Specified current through each cell.
CELL_VOLTAGE -- Calculated cell voltage.

CELL TEMP -- Specified average temperature of cell.

STACK VOLTAGE -- Calculated total voltage across cell stack.
NO _OF CELLS -- Specified total number of cells in stack.

DELTA_VOLT -- Specified difference between Nernst potential at fuel-
cell exit and cell voltage.

45

FUEL UTIL -- Calculated value of fuel utilization.
02 _UTIL -- Calculated value of OZ utilization.
HF -- Calculated value of overall isothermal heat of reaction.

E -- Calculated Nernst potential at fuel-cell exit.

4.5 MAGNETOHYDRODYNAMIC-GENERATOR MODEL

The magnetohydronamic-generator model (MG) simulates an MHD channel. The
model has two entry points -- MGH, used to model the hot gas flow through the channel,
and MGC, used to model the coolant flow through the channel. The MGH entry must be
called before the MGC entry. Both entries require flows of the generic type GAS.

The parameters of the MG model are as follows:

AREA INLET -- Calculated inlet flow area of the gas flow.
AREA OUTLET -- Calculated outlet flow area of the gas flow.
B FIELD -- Specified value of the magnetic field.

CONDUCTIVITY -- Calculated value of the electrical conduectivity of
the gas flow at the channel exit.

DELTA_LENGTH -- Specified length increment along the channel.
Calculations along the channel are performed at discrete locations,
DELTA LENGTH apart.

»

EXIT_PRES -- Specified value of the cutoff pressure. Calculations
along the channel terminate when the calculated pressure becomes less
than this value. (Actual exit pressure will not necessarily attain this
specified EXIT PRES value.)

FARADAY CURRENT -- Calculated value of the Faraday current.
FARADAY FIELD -- Calculated value of the Faraday electrie field.

FLOW_RATIO -- Calculated ratio of the channel length to the channel
height at the exit.

FRACTION HEAT LOSS -- Calculated ratio of the heat loss to the
coolant flow to the power produced by the channel.

FRACTION PRES_LOSS -- Calculated ratio of the pressure drop along
the channel to the inlet pressure for the gas flow.

46
FRICTION COEF -- Specified value of the friction coefficient (used in
calculating the pressure drop along the channel).
HALL FIELD -- Calculated value of the Hall field.

HALL PARAMETER -- Calculated value of the maximum Hall
parameter at the channel inlet or exit.

INVERTER EFF -- Specified efficiency of the electrical inverter.

LENGTH -- Calculated length of the channel (a multiple of DELTA _
LENGTH).

LOAD FACTOR -- Specified value of the load factor along the channel.

MACH_NO_INLET -- Calculated value of the inlet-gas-flow Mach
number.

MACH_NO OUTLET -- Calculated value of the exit-gas-flow Mach
number.

POWER _DENSITY -- Calculated value of the power density within the
channel.

STANTON_NO -- Specified value of the Stanton number (used in
calculating gas-side convective heat loss to the coolant flow).

WALL _TEMP -- Specified wall-temperature value (used in calculating
heat loss to the coolant flow). This temperature should be between the

coolant and gas-flow temperatures.

EXTRACTED -- Calculated value of the enthalpy extracted from the
gas flow.

ABSORBED -- Calculated value of the enthalpy absorbed by the coolant
flow.

4.6 COMPONENT MODELS FOR LIQUID-METAL SYSTEMS

4.6.1 Liquid-Metal Pipe Model

Liquid-metal flow through a pipe is modeled by MPIP, which requires one pass-
through flow of the generic type LIQ. The parameters of the MPIP model are as follows:

FRIC_FAC -- Calculated friction factor of the flow within the pipe,
established using simple Reynolds-number correlation.

47

VISC -- Specified viscosity of the flow within the pipe.
RE -- Calculated Reynolds number of the flow within the pipe.

FD -- Calculated pressure drop per unit length of pipe due to the
frictional effects of the flow on the pipe.

FG -- Calculated pressure changes per unit length of pipe due to the
effects of gravity on the mass of fluid within the pipe.

AREA -- Calculated flow area of the pipe, based on the inlet mass flow
rate, density, and velocity.

DIAMETER -- Calculated pipe diameter, based on the calculated area.
LENGTH -- Specified length of the pipe.

GRAV_ANGLE -- Specified angle the pipe makes with the gravitational
field.

4.6.2 Liquid-Metal Nozzle Model

The liquid-metal nozzle model (MNOZ) requires one pass-through flow of the
generic type LIQ. The parameters of the MNOZ model are as follows:

EFFICIENCY -- Specified efficiency of the nozzle, defined as the
change in velocity heads divided by the change in pressure across the
nozzle.

»
EXIT VELOCITY -- Specified exit velocity from the nozzle.
LENGTH -- Specified length of the nozzle (used in determining gravita-
tional effects on the pressure changes across the nozzle due to the

mass of fluid within the nozzle).

GRAV_ANGLE -- Specified angle that the nozzle makes with the
gravitational field.

4.6.3 Liquid-Metal Diffuser Model

The liquid-metal diffuser model (MDIF) requires one pass-through flow of the
generic type LIQ. The parameters of the MDIF model are as follows:

EXIT VELOCITY -- Specified exit flow veloeity.

EFFICIENCY -- Specified efficiency of the diffuser (defined as diffuser
pressure rise divided by change in velocity heads).

48

LENGTH -- Length of the diffuser, used in calculating pressure changes
due to gravitational effects on the liquid mass. (This pressure change is
added to that due to the diffuser efficiency.)

GRAV_ANGLE -- Angle that the diffuser makes with respect to the
gravitational field (in degrees). At GRAV_ANGLE=90, no gravitational
effects are present.

4.6.4 Liquid-Metal Magnetohydrodynamic-Generator Model

The two-component liquid-metal MHD-generator model (MMHD) requires two
pass-through flows of the generic types GAS and LIQ. The first flow represents the
predominant gaseous component of the two-component flow, while the second represents
the liquid component.

The parameters of the MMHD model are as follows:

EFFICIENCY -- Specified isentropic expansion efficiency of the
generator.

EXIT PRES -- Specified exit pressure from the generator.

SLIP_RATIO -- Specified ratio of the gas velocity to the liquid veloecity
at the exit of the generator.

TEMP _DIFF -- Specified difference between the liquid temperature and
that of the gas at the exit of the generator.

LENGTH -- Length of the generator (used in calculating the gain or loss
in energy due to the effects of gravity on the mass of fluid within the
generator).

GRAV_ANGLE -- Specified angle the generator makes with the gravita-
tional field.

VOID_FRACTION -- Calculated void fraction at the exit of the
generator.

4.7 TWO-COMPONENT LIQUID/GAS SEPARATOR MODEL

The two-phase, two-component liquid/gas separator model (SEPR) requires two
pass-through flows and two output flows, all of the generic type GAS. The first pass-
through flow represents the predominant gaseous component, while the second represents
the liquid component. The first of the output flows represents any gaseous carry-over
flow that leaves with the liquid pass-through flow. The second output flow represents
any liquid carry-over flow that leaves the separator with the gaseous pass-through flow.

49

The parameters of the SEPR model are as follows:

VELOCITY _HEAD RATIO -- Specified ratio of the square of the liquid
velocity out of the separator to the square of the liquid veloeity into
the separator (used only when the separator is run in the specified
efficiency mode).

PRES DROP(2) -- Specified array of pressure drops for the gaseous and
liquid flows through the separator.

VOL_RATIO -- Calculated ratio of the volume flow rate for the gas to
that for the liquid.

LIQ CO -- Specified fraction of the liquid flow rate carried over with
the gas flow.

GAS_CO -- Specified fraction of the gas flow rate carried over with the
liquid flow.

EFFICIENCY -- Calculated ratio of the fraction of liquid mass to total
mass times the velocity head ratio.

VAPOR _CO -- Calculated mass of liquid carried over with the gas flow
due to the vaporization of the liquid. This parameter, calculated when
VAPOR_INC is set to "YES," is used only to indicate how much of the
liquid vapor is carried over. The actual mass is not combined with the
exiting gas flow or subtracted from the liquid flow.

VAPOR_INC -- Switeh used to indicate whether or not liquid vapor
carry-over is to be calculated. 5

HEAT REJECTED -- Calculated heat that would be lost from the liquid
if vapor carry-over occurred.

4.8 TWO-PHASE COMPONENT MODELS

4.8.1 Two-Phase Mixer Model

The two-phase, two-component mixer model (TPMX) requires two pass-through
flows, the first being the gaseous component and the second, the liquid component. The
parameters of the TPMX model are as follows:

PRES OUT OPTION -- Specified character string defining an option for
calculation of the exit pressure as a weighted average of the gas and
liquid inlet pressures. If mix is equal to "MIX," this option is used;
otherwise, the output flow pressure is taken as the minimum inlet flow
pressure minus any specified pressure drop.

50

PRES DROP -- Specified pressure drop through the mixer.

DP_FRAC -- Specified fraction of the minimum or weighted average
inlet pressure, used as an additional pressure drop through the mixer.

SLIP_RATIO -- Specified ratio between the gas and liquid flow
velocities.

TEMP_DIFF -- Specified difference between the gas temperature and
that of the liquid.

PRES DIFF IN -- Calculated difference between the gas inlet pressure
and that of the liquid.

VOID FRACTION -- Calculated void fraction of the exit flow.

4.8.2 Two-Phase Nozzle Model

The two-phase, two-component nozzle model (TPNZ) requires two pass-through
flows of the generic types GAS and LIQ. The first flow represents the gaseous
component and the second, the liquid component. The parameters of the TPNZ model
are as follows:

EFFICIENCY -- Specified efficiency of the nozzle, defined as the ratio
of the actual change in enthalpy across the nozzle to the isentropic
enthalpy change.

EXIT PRES -- Specified exit pressure from the nozzle.

SLIP_RATIO -- Specified ratio of the gas velocity to the liquid velocity
at the nozzle exit.

TEMP_DIFF -- Specified difference in temperature between the liquid
and the gas at the nozzle exit.

LENGTH -- Specified length of the nozzle.

GRAV_ANGLE -- Specified angle between the nozzle and the
gravitational field.

VOID_FRACTION -- Calculated void fraction of the flow at the nozzle
exit.

51

4.8.3 Two-Phase Diffuser Model

The two-phase, two-component diffuser model (TPDF) requires two pass-through
flows, the first representing the gaseous-phase component and the second the liquid-
phase component. Both of these flows are of the generic type GAS or LIQ.

The parameters of the TPDF model are as follows:

MODE -- Specified character string taking on the values " " or "SPEC-
EFF." If "SPEC-EFF" is not set, then the efficiency of the diffusion
process is calculated within the code (based on the void fraction of the
flow).

EXIT VELOCITY -- Specified exit velocity of the liquid flow.

SLIP_RATIO -- Specified ratio of the gas velocity to the liquid velocity.
EFFICIENCY -- Specified efficiency of the diffuser, defined as the
ratio of change in pressure across the diffuser to the change in velocity

head across the diffuser.

LENGTH -- Specified length of the diffuser (used in calculating
additional pressure changes due to gravity).

GRAV_ANGLE -- Specified angle the diffuser makes with the
gravitational field.

VOID FRAC IN -- Calculated inlet void fraction.

VOID FRAC OUT -- Calculated exit void fraction.
»

4.9 SYSTEM MODEL

The system model (SYST) calculates the total power put in, produced, consumed,
and lost by the system. The model does not require any flows.

The parameters of the SYST model are as follows:

POWER_HEAD PTR -- Specified pointer to the linked list of model
power substructures.

FLOW_HEAD PTR -- Specified pointer to the linked list of model flow
substructures.

NET -- Calculated net power produced by the system (total power
produced minus total power consumed).

52

EFFICIENCY -- Calculated system efficiency based on total power
input, net power, and auxiliary power. If total input power is zero,
EFFICIENCY is also set to zero.

AUXILIARY -- Specified value of any auxiliary-power requirements.
Auxiliary power is subtracted from net power in calculating efficiency.

UNITS -- Character string that indicates SI for output in SI units;
otherwise, British units are used for output.

53

5 EXAMPLES USING STEADY-STATE MODELS

Unlike the examples provided in Chapter 1, all examples discussed in this chapter
conform to the actual models available in the SALT library. The reader may find it
useful, in going through these examples, to refer to the relevant sections in Chapter 4 to
review the documentation on particular models.

5.1 SIMPLE SYSTEM CONFIGURATIONS

5.1.1 Simple Steam-Flow System

The first example demonstrates all the inputs necessary to run a very simple
system configuration. Consider a steam/water flow, heated by a heater (HT) and then
run through a steam turbine (ST). The system consists of one flow type, STM, and two
model types, HT and ST; the following PROCESS statement represents this system:

PROCESS STM_l-> HT 1 ST_l ->STM_EXT

A label has been appended to the models and flows to satisfy the requirement that all
models and flows must have labels. The ST model requires an additional output flow,
which has been labeled "EXT." As a general rule, all flows in a system configuration
should originate within a component model. Thus, since the HT model does not generate
a flow (its only flow is a pass-through flow), an inlet model (IN) is used to generate a flow
for it. The complete system configuration for this example is then represented by the
following:

PROCESS STM_1-> IN_1 HT 1 ST 1 ->STM_EXT

Before this statement can be executed, the properties procedures must be
initialized. This is accomplished by the statement

PROCESS GP_1:IN

After the component models have been executed, the results of the analysis can be
printed out by calling all of the output entries of all the models:

PROCESS NULL-> IN_1:0UT HT 1:0UT ST_1:0UT
The output entries require no flow arguments. Thus, the last-used pass-through flow
("STM_1") must be nullified; otherwise, it would be passed to the output entries. The
NULL flow is used to turn off the pass-through flow. This PROCESS statement can be

written more conveniently as

PROCESS NULL-> *_*:0UT

54

The use of * *:0UT implies that each model used in the system analysis that has an
":OUT" entry is to be called. The complete system-configuration specification for this
problem (forming the contents of the SALT input file, STRUCT) is as follows:

PROCESS GP_1:IN
PROCESS STM 1-> IN_1 HT_1 ST_l ->STM_EXT
PROCESS NULL-> *_*:0UT

The only other data needed for this problem are the values of the model input
parameters, which can be specified by the use of the DATA statement. A typical
example of this statement for this problem would be the following:

DATA
IN_1.PARM .ID='H20'; .T=0; .P=150.; .M=20.; .Q=0.0;
HT_l.PARM .HEAT=1E6;
ST_l . PARM .EXIT_PRES=10 .3 .EFFICIENCY=0.88;

Here, the parameters for the IN model define the initial steam-flow conditions upstream
of the HT model. The specification of the temperature as zero (T = 0) implies that the
flow is saturated or in the two-phase region; the values of the pressure, P, and quality, Q,
determine the temperature, as well as the other flow properties of enthalpy and
entropy. The statement HT.PARM.HEAT=1E6 specifies that one megawatt of energy
will be transferred to the steam flow before entering the ST model; there, the steam
flow will be expanded to 10 atm at an isentropic efficiency of 88%, as specified by the
ST model parameters. The other parameters for these models will be taken as their
default values (defined within the INTF file). In particular, if the ST parameter (SR) is
defaulted to zero, then no extraction flow will exist; however, this flow must still be
shown in the PROCESS statement.

5.1.2 Inclusion of a System Model

Suppose that the steam flow from the ST model of the previous section is
condensed in a steam-condenser model (SC) and then pumped back to the inlet pressure in
a pump (PUMP). The processing of the steam flow from the inlet, IN, through the HT,
ST, SC, and PUMP models is represented as follows:

PROCESS STM_1-> IN_1 HT_1 ST 1 ->STM_EXT SC_ 1 PUMP 1

The SC and PUMP models were simply added to the end of the PROCESS statement. The
flow passing through these models is that of STM_1 and not STM EXT, because the last
pass-through flow is that of STM 1.

Suppose that in addition to the component powers generated by the ST, consumed
by the PUMP, and rejected (as heat) from the system by the SC, the net power is also
desired. The net power could be calculated by using the PLI key word and coding the
appropriate PL/I statements (with reference to the model POWER substructures).
However, the net power can be more easily determined using the SYST model. This
model does not require any flows, so it should be specified after the STM_1 pass-through
flow has been nullified.

55

The entire input specified in the STRUCT file for this problem would be as
follows:

PROCESS GP_l1:IN
PROCESS STH d=>* JN0 HT 1 .ST 1 ->STM EXT SC_l1 PUMP_1
PROCESS NULL-> SYST 1 * *‘OUT

In this case, the additional model input parameters for the SC, PUMP, and SYST
models must be specified along with the other model parameters in the DATA
statement. No input parameters are required for the SC model. For the PUMP, the
EXIT PRES and EFFICIENCY parameters must be specified. Because the SYST model
processes the substructures of all the models, the head pointers of the linked list of such
substructures need to be assigned to the SYST parameters of POWER_HEAD PTR and
FLOW HEAD PTR. The names of these head pointers are defined within the INTF file; at
present, they are the same as the SYST parameter names themselves. Thus, the
following would be added to the DATA statement of the system considered in Sec. 5.1.1:

PUMP_1.PARM .EXIT PRES=250.; .EFFICIENCY=0.72;
SYST_1.PARM .POHER HEAD PTR=POWER_HEAD PTR;
+FLOW_| HEAD PTR‘FLOH HEAD PTR,

5.1.3 Inclusion of a Demand Model Constraint

Figure 12 depicts a system consisting of a water/steam flow (LIQ) that is run
through a heater (HT) and then through a steam drum (SD). The generated steam flow
from the drum is processed by a steam turbine (ST), a condenser (SC), a water pump
(PUMP), and a mixer (MX), where it is mixed with the downcomer flow (LIQ) from the SD
model.

uQ LQ ST™
——» HT SD ST SC
LQ
ST™
MX PUMP
LQ

FIGURE 12 Simple Steam-Plant System

56

This system configuration is easily represented by the following PROCESS
statement, using the general rules for representing pass-through, input, and output flows:

PROCESS LIQ l1-> IN_LIQ HT_1
R SD 1 =>STM_1

STM 1-> ST 1 ->STM EXT SC_1 PUMP_l
LIQ 1-> MX 1 <-STM_l

Here, the model IN LIQ has been added to initiate the LIQ_1 flow. Also, although it is
not shown in Fig. 12, the extraction flow from the ST model has been included in the

PROCESS statement.

To complete the inputs for this example, the properties procedures should be
initialized, the SYST model may be added, and the outputs may be printed by use of the
* *:0UT. The complete system configuration specified in the STRUCT file would be as
follows:

PROCESS GP_1:IN
PROCESS LIQ l1-> IN LIQ HT_1
A SD 1 =->STM_1
STM 1-> ST 1 =->STM EXT SC_1 PUMP_l
LIQ_1-> MX_1 <-STM_1
NULL-> SYST_1 * *:OUT

As was indicated in Chapter 3, some models are of a demand type and require
specific constraints to be added to the SALT input. The SD model is of such a type; it
requires a specified input flow quality in order to work properly. This specified quality is
a constraint that may be met in many different ways. In the system discussed in Sees.
5.1.1 and 5.1.2, for example, the heat load in the heater might be varied until the correct
steam quality is reached, or (for a fixed heater load) the input steam-flow rate might be
varied. In either case, a suitable VARY statement would be needed. In order to obtain
the correct inlet steam-drum quality corresponding to the required steam-drum quality,
the SD model sets the value of the SD parameter (CONS) equal to the inlet enthalpy
minus the value required. Thus, SD_1.CONS must be constrained to equal zero within
some subsystem. Assuming that the heater load will be varied to meet this constraint, a
simple subsystem can be set up over the HT and SD models using the SYSBEG and
SYSEND delimiters. The entire input would look like the following:

PROCESS GP_1:IN
LIQ 1-> IN LIQ

SYSBEG A X

VARY HT_1.HEAT = * 1E1 20E6

CONS SD_1.CONS = 0.0

PROCESS LIQ 1-> HT 1 SD 1 ->STM 1
SYSEND A % = o i
PROCESS STM_1-> ST 1 ->STM EXT

SC 1 PUMP 1

LIQ 1=> #MX'1 —<=STM |

NULL-> SYST 1 * *:QUT

DATA .

57

Here, the VARY statement instructs SALT to vary the HT parameter HEAT between
10W and 1 MW until the constraint on the steam-drum parameter, CONS, is
established. The "*" used in the VARY statement tells the SALT systems code to start
its iterations with the current value of HT 1.HEAT; this value would be either its default
value or the value specified in the DATA statement.

The information in the DATA statement should reflect the model parameters for
the IN_LIQ, HT, SD, ST, SC, WP, and MX models. The MX does not require any
parameters, and the SD requires only the specified inlet steam quality (QUAL), for which
0.2 would be a typical value. The other models can use the same DATA statement as was
presented in Sec. 5.1.2.

5.1.4 Inclusion of User-Imposed Constraints

In Sec. 5.1.3, a constraint was added to accommodate the requirements of a
demand model. Such constraints must be added to the system in order that such models
work properly. However, additional constraints may be added to represent various user-
imposed system requirements. These constraints may be added, as additional VARY and
CONSTRAIN statements, to the subsystems used to establish the demand model
constraints (provided, of course, that the parameters varied and the constraints both lie
within those subsystems). Alternatively, user-imposed constraints may be established by
setting up additional subsystems using additional SYSBEG and SYSEND statements. In
general, any number of such subsystems can be set up to establish other system
constraints. A given subsystem may even contain other subsystems.

Suppose that, besides the constraint on steam-drum quality, a constraint on the
total power output is required:

SYST_1.SPOWER.PRODUCED=10E6
»
To satisfy this constraint, the inlet mass flow rate (LIQ) will be varied. This is easily
represented as follows:

PROCESS GP_l:IN
SYSBEG A
PROCESS LIQ 1-> IN LIQ HT_l
SD 1 ->STM_l
STM_1-> ST 1 ->STM _EXT SC_1 WP_l
LIQ_1-> MX_1 <-STM_l
NULL-> SYST_1
VARY IN LIQ.PARM.M= * 10 100
; HT_1.PARM.HEAT= * 1E1 20E6
CONS SYST_l.SPOWER.PRODUCED=10E6
; SD_1.CONS=0.0
SYSEND A
PROCESS NULL-> * *:OUT
DATA .

58

Here, the constraint on the system power was simply added to the subsystem
used to establish the SD demand constraint by enlarging that subsystem from the IN LIQ
model down to the SYST 1 model. The IN LIQ model was included within the subsystem,
because one of its parar;leters is varied within the subsystem. The SYST_1 model was
ineluded within this subsystem so that the system power produced would be calculated at
each iteration. The call to * *:OUT is placed outside of the subsystem loop; otherwise,
output would be produced for every iteration.

The same system problem can also be handled by the use of two nested
subsystems, as follows:

PROCESS GP_l:IN
SYSBEG B
VARY IN LIQ.PARM.M = * 10 100
CONS SYST 1.SPOWER.PRODUCED = 10E6
PROCESS LIQ 1-> IN_LIQ
SYSBEG A
VARY HT_1.PARM.HEAT = * 1El 20E6
CONS SD_1.CONS = 0.0
PROCESS LIQ 1-> HT_1 SD_1 ->STM_1
SYSEND A
PROCESS STM 1-> ST 1 ->STM EXT SC_l PUMP_l
LIQ 1-> MX 1 <-STM 1
NULL-> SYST 1
SYSEND B
PROCESS NULL-> * *:0UT
DATA .

In this case, the iterations within the inner subsystem (labelled A) to establish the steam-
drum constraint will be performed for each iteration of the outer subsystem to establish
the system power constraint.

In a problem such as this, when the MINIMIZE statement (see Sec. 5.1.5, below)
has not been specified, the number of constraints must equal the number of variables
included in the VARY statements. Otherwise, the problem will be either overdetermined
or underdetermined. Such equality-constrained problems make use of an n-dimensional
hybrid equation solver. This equation solver is reasonably robust, but (depending on the
problem) it may fail occasionally. If a failure occurs, it might be possible to decompose
the problem into nested sets of smaller-dimensional problems or to try a new initial guess
to find a solution. Sometimes, some of the algorithm's controlling parameters need to be
adjusted. These controlling parameters may be assigned values by the use of the SWITCH
statement. Like the VARY and CONSTRAIN statements, the SWITCH statement should
lie between the SYSBEG and SYSEND statements to which it refers. A typical example
might be the following:

SWITCH MAXIT=50 DEL=1E-4 ACC=1E-2

29

where MAXIT is the maximum number of iterations that will be used to perform the task
within the subsystem, and DEL represents a measure of how the variables within the
subsystem will be perturbed in determining the gradients of the constraints. A DEL of
1E-4 means each variable will be perturbed by a factor of 10 times the value of the
variable. The value of DEL should be made as small as possible to represent the
gradients accurately, but not so small that round-off error hinders the calculations. ACC
is the termination criterion. Whenever the sum of the squares of the constraint
violations is less than ACC, the iterations are terminated. The equation solver will
attempt to scale the variables and constraints internally, so all constraints will usually
converge to zero uniformly.

5.1.5 Inclusion of an Optimization Problem

Suppose that, rather than constraining the plant power produced, the maximum
plant power is to be obtained as a function of the inlet steam pressure. The MINIMIZE
statement may be used to set up this problem as follows:

PROCESS GP_1:IN
SYSBEG A
PROCESS LIQ_l-> IN_LIQ HT_1
SD_1 ->STM_1
STM_1-> ST_1 ->STM_EXT SC_1 PUMP_l
LIQ_1-> MX_1 <-STM_1
NULL-> SYST_1
VARY IN _LIQ.PARM.P =% 100 200
; HT_1.PARM.HEAT= * 1E1 20E6
CONS SD_1.CONS=0.0
MINIMIZE -SYST_l.SPOWER.PRODUCED
SYSEND A
PROCESS NULL-> *_*:0UT
DATA . :

When the MINIMIZE statement is used, the number of variables in the VARY statement
should exceed the number of equality constraints; inequality constraints also may be
included. For instance, if an upper limit of 600 K on the heater exit temperature is
required, the constraint would be stated as follows:

CONS HT_1.FLC.TEMP<600

It is permitted to have more inequality constraints than variables when the MINIMIZE
statement is used.

Optimization problems are inherently more difficult to solve than pure-equality-
constrained problems. The algorithm that is used in solving these nonlinearly constrained
optimization problems is that of M.J.D. Powell.1 For the algorithm to work at its best,
the constraints and the objective function, as defined by the MINIMIZE statement, should
be continuously differentiable functions. As with the equation solver, failure may occur

60

when attempting some problems. Again, variation of the initial guesses, decomposition
of the problem, or variation of the optimizer parameters could resolve the problem. The
same parameters -- ACC, MAXIT, DEL, and PRINT -- are available for the optimizer as
for the equation solver and have roughly the same meanings. Now, however, the
iterations terminate when the gradient of the objective function plus the sum of the
absolute values of the Lagrangian multipliers times the constraint violations is less than
ACC. In decomposing such a problem, inner iterative loops that are pure-equality-
constrained problems may be set up. (There is no restriction against using both equation-
solver and optimizer loops in the same problem.)

Another difficulty associated with optimization problems is that only local
minimums may be found. No good techniques currently exist for finding the global
minimum of a general nonlinear problem. Where such a situation is suspected, parameter
sweeps might be necessary to confirm the results of the optimization.

5.1.6 Inclusion of a Parameter Sweep

As was indicated in Sec. 5.1.5, parameter sweeps can be a better alternative than
optimizations, at least when the problem dimension is small. Consider again the system
discussed in Sec. 5.1.3. Suppose it is desired to determine the output power (in fact, all
output parameters) as a funection of the inlet liquid pressure as it is swept over 100 to 200
atm (in increments of 10 atm). This task is symbolized using the following SWEEP
statement:

SWEEP IN_LIQ.P = 100 TO 200 BY 10
This statement would be included within its own separate subsystem as follows:

PROCESS GP_1:IN
SYSBEG B
SWEEP IN_LIQ.P = 100 TO 200 BY 10
PROCESS LIQ 1-> IN LIQ
SYSBEG A 3
VARY HT_1.PARM.HEAT = * 1El 20E6
CONS SD_1.CONS = 0.0
PROCESS LIQ_ 1-> HT 1 SD 1 =->STM 1
SYSEND A & = i -
PROCESS STM_l-> ST 1 ->STM EXT SC 1 PUMP 1
LIQ_1-> MX 1 <-STM 1 7 %
NULL-> SYST 1 * *:QUT
SYSEND B
DATA #1752

In this case, the PROCESS NULL-> * *:0UT is placed within the SYSBEG-
SYSEND subsystem delimiters, so the output is produced for each value of the inlet liquid
pressure.

61

5.1.7 Inclusion of a Feedback Loop

In Sec. 5.1.3, the liquid flow entered and then left the system but did not form a
closed loop. Many systems do include closed loops. We now consider a system in which
an additional pump has been added after the mixer and in which the liquid flow closes
upon itself (see Fig. 13).

No real starting point for the liquid flow exists in such a system, so one is
created artificially by tearing the flow path at some point and using the initiator model.
The inlet conditions (flow conditions out of the initiator) are then varied until they match
those out of the last model at the point of the tear. For example, if one tears the flow
between the pump and the heater model and includes an initiator model at that point, the
PROCESS statement for the configuration may be written as follows:

PROCESS LIQ l-> IN LIQ HT 1 SD_1 =->STM_1
STM_1-> ST_l ->STM _EXT SC_l PUMP 1l
LIQ_1-> MX_ 1 <-STM_l PUMP_2

One now needs to examine the flow conditions out of the PUMP_2 model and ask
what conditions at the IN_LIQ model must be varied in order to make these two flows
equal. Since all of the flow mass leaving the IN LIQ model eventually leaves the PUMP 2
model, the mass flow rates are the same for any inlet flow rate. The exit pressure from
the PUMP _2 is an assigned input value to that model, so assigning that same value to the
IN_LIQ.P parameter will make the pressures match for the two flows. The only other
condition to be matched is temperature. The temperature out of the pump is not known;
thus, to establish equality of temperature between the outlet flow of the pump and the
IN LIQ flow, one could vary the IN LIQ flow temperature as follows:

VARY IN_LIQ.T = 400 300 500
until the following condition is met:

CONS PUMP_2.FLC.TEMP = IN_LIQ.T

LQ LiQ ST™
HT SD ST SC
LQ
LQ ST™
PUMP MX PUMP

FIGURE 13 Simple Steam-Plant System with Feedback Loop

62

Then the system inputs would look like this:

PROCESS GP_l:IN
SYSBEG A
VARY IN LIQ.T = * 300 500
CONS PUMP_2.FLC.TEMP = IN LIQ.T
PROCESS LIQ 1-> IN LIQ HT_1 SD_1 =->STM_l
STM 1-> ST 1 ->STM EXT SC_l1 PUMP_l
LIQ 1-> MX_1 <-STM_l PUMP_2
SYSEND A
PROCESS NULL-> SYST 1 *_ *:0UT
DATA .

The DATA statement is similar to that used in Sec. 5.1.3, but now it is important
to set the IN LIQ.P parameter equal to the value assigned to PUMP 2.EXIT PRES.

The point at which a flow stream is torn in order to close a feedback loop can
affect which variables need to be varied to close the loop. By choosing the tearing point
after the pump in the above example, one could match the pressures without any VARY-
CONS statements. Similarly, by choosing this point as the tearing point, the flow is (for
sufficiently high pump pressure) subcooled, and it is possible to vary the temperature.
For other recycle loops, if it is not known beforehand whether or not a two-phase region
might be entered, the enthalpy rather then the temperature should be varied. (The inlet
parameter PARM.T would be set to zero and the parameter PARM.Q, representing the
flow quality, would be varied. Subcooling and superheating are represented by varying Q
below 0.0 and above 1.0.)

In order to more clearly represent the recycle loops using the PROCESS
statement, an additional entry to the IN model may be called to represent the "back
door" to the model. This entry, denoted "CYCL," also calculates the difference between
the flow entering this entry and that originating from the IN model. This difference is
stored in the variables DT, DP, DH, DM, and DV, representing the difference in
temperature, pressure, enthalpy, mass, and velocity, respectively. In the above problem,
for example, if the model entry IN_LIQ:CYCL had been specified in the PROCESS
statement after the PUMP_2 model, then the VARY and CONS statements could have
been written as follows:

VARY IN LIQ.T
CONS IN_LIQ.DT

400 300 500
0.0

This form displays a greater degree of symmetry in defining the loop closure.

As was true for the demand-type model constraints, the constraints needed to
close a recycle loop must be included to represent a system accurately. In general, there
may be many loops -- and many ways to close such loops -- in a complex system. The
closure also depends on the variables within the flow itself. Thus, in recycle gas flows, it

may also be necessary to close on species concentrations, in addition to pressure,
temperature, and mass flow rate.

63

5.2 SUMMARY OF THE INPUT-FORMATION PROCESS

The general process by which the inputs for a system problem are formed usually
entails the following stages:

1. For the given system configuration, appropriately label the models
and flows (consistent with each model's requirements as to pass-
through, input, and output flows).

2. Formulate the PROCESS statement for the system, tearing flows
for recycle loops and inserting appropriate flow initiators as
necessary.

3. Consider any demand-type models included in the system and
decide how their demand constraints will be satisfied (i.e., choose
the parameters to be varied).

4. Decide on each recycle loop and how it will be closed. (Loop
closure sometimes depends on model demand constraints, and these
constraints sometimes depend on closure.)

5. Add any additional constraints and their establishing parameters
that may be needed to define system requirements (i.e., user-
defined constraints).

6. Work out the subsystem breakdown for implementing all of the
constraints. This, of course, may be accomplished while one is
adding the constraints and their establishing parameters. (One
choice of a subsystem breakdown is simply to include all
constraints in one subsystem, which is the eatire system.)

7. Add any calls to the property-initialization procedures, system
models, output entries, and the DATA statement.

As the system configuration becomes more complicated, it can become difficult
to obtain a reasonable set of starting values for all the VARY parameters. It may then
be useful to formulate only the PROCESS and DATA statements and to run the analysis
without any constraints. The resulting output can be used to determine what parametric
values should be used as constraints are added. The output may also reveal a conceptual
error made while setting up the system configuration; finding the error at this point
saves computer time that would have been lost in performing iterations on an incorrect
system specification.

5.3 ANALYSIS OF POWER-PLANT SYSTEMS

Several more detailed examples will now be given. These examples consist of a
conventional fossil/steam power plant, an open-cycle MHD plant, a solid-oxide fuel-cell
plant, and a liquid-metal MHD plant.

64

5.3.1 Fossil/Steam Power Plant

Figure 14 shows a simple fossil/steam power plant that employs air preheating,
steam superheating, and reheating; the plant is equipped with six steam-turbine models
(to account for all extraction points) and four feedwater heaters. With the models and
flows labeled as shown in the figure, we can write the PROCESS statement. (By starting
the steam flow before the steam drum, there is only one recycle loop.) Starting with the
steam flow, the PROCESS statement would be as follows:

PROCESS
LIQ 1-> 1IN H20 SD_1 ->STM_l
STM 1-> HX _SH:C ST HPl ->STM_HPl
2 ST_HP2 ->STM_HP2
HX RH:C ST _IP ->STM_IP
ST_LP1 ->STM_LPl
ST_LP2 ->STM_LP2 ST_LP3 ->STM_DUM
sc_1
STM_HP1-> FH_HP1:H <-STM_DUM
STM_HP2-> FH_HP2:H <-STM_HPl
STM_LP1-> FH_LP1:H <-STM_HP2
STM_LP2-> FH_LP2:H <-STM_LPl
STM_1-> MX_SC <-STM_LP2
& PUMP_SC HX_ECON:C FH_LP2:C FH_LPl:C
DEAR_1 <-STM_IP
PUMP_FW FH_HP2:C FH_HP1:C
LIQ_1-> MX FW <-STM_1
B PUMP BFP HX BOIL:C IN_H20:CYCL

We start with the liquid-water (actually two-phase) flow into the SD 1 model and
then follow the STM 1 flow from the SD 1 model through the turbine train to the exit of
the SC_1 model. At this point, it becomes necessary to mix this STM_1 flow with
another, as yet unknown, flow. However, it is possible to go to the hot entry of the first
high-pressure feedwater heater (FH_HP1) and continue processing the flows through the
hot entries of each feedwater heater. The second flow of each of these feedwater
entries is the cascaded flow from the previous high-pressure heater. The first high-
pressure heater, not having such a cascaded flow, is fed a dummy steam flow. This
dummy flow must be created like any other flow, even though its mass flow rate will be
set to zero. The last turbine stage does not have any extraction flow (STM_DUM leads
nowhere), so this flow may also be used for this first high-pressure feedwater flow. If
the lower-pressure turbine stage had made use of this extraction flow, then a flow
initiator would have been required to generate the STM DUM flow.

By calling these hot-side feedwater-heater entries, the flow from the steam
condenser (STM_1) can now be mixed with a known flow (STM_LP2). The STM_1 flow can
then be processed through the pumps, cold-side entries to the feedwater heaters, and
deaerator and finally mixed with the downcomer flow (LIQ 1) from the SD 1 model. This

LIQ_1 flow is then followed through the boiler feed pump and the boiler and back to the
liquid-flow initiator.

FUEL -1

cp |aIR_1 N FUEL-1[InF
AR AIR coAL|
AIR_1
cB |GAS_1| Hx Hx |GAS| HX HX HX DRY SK | GAS_1
1 BOIL SH RH AIR [econ 1 1
I =
J STM_1
STM_1
IN | LIQ-1_ | sD I ST ST] ST ST ST]f ST |[STM.1 | SC
H20 1 HP1 HP2 1P LP1 LP2 ‘7 LP3 1
Lia-1 STM_HP1 STM_HP2 STM_1P STM_LP1 STM_LP2 ‘srm-ouu
STM-DUM STM_1
Lia_1 [pume| Lia_1 [mx | _STM_1 J FH | _STM-1[pEAR .J FH r| FH pump| STM_1| Mx
BFP FW HP1 HP2 1 LP1 LP2 sc sc
STM_HP1 Lk STM_LP1 STM_LP2

FIGURE 14 Fossil/Steam Power Plant

STM_HP2

S9

66

The PROCESS statements for the AIR_1 and GAS 1 flows are easily developed as
follows:

PROCESS
AIR 1-> 1IN AIR CP_AIR HX_AIR:C
FUEL 1-> INF_COAL DRY 1 CB_1 <-AIR_1 =->GAS_l
GAS_1-> HX BOIL:H HX_SH:H HX_RH:H
- HX_AIR:H HX_ECON:H DRY 1:H SK 1

With the PROCESS statement for this plant now completely defined, it remains
to add any necessary subsystem constraints to satisfy demand-type models and close any
loops. If the plant is being analyzed in a design mode, then the demand models are SD 1
(which requires a specific inlet steam quality) and DEAR_1 (which requires a saturated
exit flow). If the LIQ 1 flow were started before the SD_1 model, the required steam-
drum constraint could be satisfied simply by starting the flow with the appropriate steam
quality. One of the options with the IN model is to set the initiator temperature
(IN_H20.T) to zero and to specify the initiator quality (IN_H20.Q). This quality, along
with the pressure (IN_H2O.P), will then define the thermodynamic conditions of the
initiated flow. Thus, the SD constraint can be satisfied by setting the two parameters
SD_1.STEAM QUAL and IN_H20.Q to the same value.

The deaerator constraint can be satisfied in several ways, the easiest of which is
simply to vary the ST IP extraction flow rate until the exit flow from the deaerator is at
saturation conditions. This condition is satisfied when the parameter DEAR 1.QUAL is
equal to zero. Thus, this model demand constraint can be established using the following
statements:

VARY ST IP.SR = * 0.01 0.20
CONS DEAR_1.PARM.QUAL=0.0

Only enthalpy and pressure need to be matched to satisfy the single recycle
loop. The mass flow, even though it is split and mixed in many places, eventually ends up
being the same at the IN H20:CYCL entry as when it started at the IN_H20 entry. The
enthalpy closure cannot be satisfied by varying the IN_ H20 enthalpy, because this value
is determined by specifying (IN_H20.Q) to satisfy the SD 1 demand constraint. The heat
load on the HX BOIL, however, can be varied. The following two statements will close
the enthalpy.

VARY HX BOIL.HEAT = * 1El 25E6
CONS IN_H20.DH = 0.0

The pressure can be closed either by varying the IN_H20.P (which will cause the steam-
drum, and hence turbine-inlet, pressures to vary) or by varying the
PUMP_BFP.EXIT_PRES. This latter variation may be more appropriate, because the
drum pressure is usually a design characteristic of steam plants. The following
statements will close the pressure within the loop:

VARY PUMP_BFP.EXIT PRES = * 100 200
CONS IN_| H20.DP = 0.0

67

All three sets of VARY-CONS statements must be placed within a subsystem
encompassing the entire water/steam flow path. Thus, the complete input (excluding the
DATA statement) would be as follows:

PROCESS GP_l1:IN
SYSBEG A

PROCESS
LIQ_l-> IN_H20 SD_1 ->STM_l
STM_1-> HX_SH:C ST HP1 ->STM_HPI
ST_HP2 ->STM_HP2
HX_RH:C ST_IP ->STM_IP
ST_LP1 ->STM_LP1
ST_LP2 ->STM_LP2 ST_LP3 ->STM_DUM
sc_1
STM_HP1-> FH_HP1:H <-STM_DUM
STM_HP2-> FH_HP2:H <-STM_HP1
STM_LP1-> FH_LP1:H <-STM_HP2
STM_LP2-> FH_LP2:H <-STM_LPl
STM_1-> MX_SC <-STM_LP2
PUMP_SC HX_ECON:C FH_LP2:C FH_LPl:C
DEAR_1 <-STM_IP
PUMP_FW FH_HP2:C FH_HP1:C
LIQ_1-> MX FW <-STM_1
PUMP_BFP HX_BOIL:C IN_H20:CYCL

VARY HX_BOIL.HEAT = * 1E1 25E6

CONS IN_H20.DH = 0.0

VARY PUMP_BFP.EXIT PRES = * 100 200

CONS IN_H20.DP = 0.0

VARY ST_IP.SR = * 0.01 0.20

CONS DEAR_1.CONS = 0.0 .

SYSEND A

PROCESS
AIR 1-> IN_AIR CP_AIR HX AIR:C
FUEL_1-> INF_COAL DRY 1 CB 1. <=AT
GAS_1-> HX_ BOIL:H HX SH:H HX_RH:H
HX AIR H HX ECON H DRY 1:H SK_1
NULL-> SYST 1 *_*'OUT

R_1 ->CAS_1

(The models GP, SYST, and all the model "* *:OUT" entries were also added to the
PROCESS statements.)

The various model input parameters must be defined using the DATA statement;
this can be the most time-consuming aspect of setting up the SALT input. Of course,
most of these parameters have default values, and these values may be sufficient; many
of the parameters may later be varied by adding constraints to the system. In any case,
some set of values is required for each of the model input parameters.

68

A typical set of parameters for the two IN models might be as follows:

IN AIR.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=14.0;
= .XN2=0.78; .X02=0.22; .XH20=0.01;
IN_H20.PARM .ID='H20'; .T=0.0; .P=180.0; .M=75.0;
.Q=0.20;

Here, for the AIR flow initiator, the flow ID was defined as "GAS," which implies that
the GAS properties procedure is to be used to define the thermodynamic behavior of this
flow throughout the system. When ID is equal to GAS, one must define the flow's
constituents in terms of its molar fractions by species. In this case, we took the AIR
flow to be 78% nitrogen, 21% oxygen, and 1% water vapor. (If desired, argon and carbon
dioxide could also have been included.) For the steam/water flow (specifying the ID as
"H20"), the water properties code will be used to define the thermodynamiec behavior.
The temperature, pressure, and mass flow rate must also be specified for both flows. For
the steam/water flow, the condition T = 0 implies that the flow is saturated, and its
temperature will be calculated using the specified pressure. In this case, the flow's
quality must be set in order to define the thermodynamic state of the flow uniquely.
This quality is to be the same as that of the drums; thus, for the steam-drum model, the
following must also be specified:

SD_1.PARM .STEAM_QUAL=0.20;

For the INF model initiating the fuel flow, the parameters for a typical coal
might be

INF_COAL.PARM .M=2.0; .C=0.5213; .H=0.060; .0=0.3152;
.N=0.0079; .S=0.0085; .H20=0.227;
.ASH=0.0871; .HHV=20.743E6;

while for the other components in the AIR and GAS flow paths, a typical set of
parameters might be

CP_AIR.PARM .EXIT_PRES=1.15; .EFFICIENCY=0.88;
CB_1.PARM .ASH_DET=0.0;

HX_BOIL.PARM .HEAT=12E6;

HX_SH.PARM .T_SET(2)=811;

HX_RH.PARM .T_SET(2)=811;

HX_AIR.PARM .T SET(2)=500;

HX_ECON.PARM .HEAT=1ES;

DRY_1.PARM .H20_DET=0.05;

Many other parameters exist for these models; failure to specify them implies that their
default values will be used. For the HX models, these default values will be used to
determine heat-transfer surface areas, so these outputs may not be accurate in this
example. On the other hand, the results for a simple heat and mass balance will not be
affected. The T SET parameter was used for three of the HX models to define the outlet
temperature of the cold flow. This parameter should be used carefully, because the

T_SET element (1 or 2) must correspond to the entry ("H" or "C") that is used first in the
configuration.

69

For the turbine/feedwater train, a typical set of inputs might be:

ST_HP1.PARM .EXIT PRES=100.; .EFFICIENCY=0.84; .SR=0.10;
ST_HP2.PARM .EXIT PRES=50.; .EFFICIENCY=0.84; .SR=0.10;
ST_IP.PARM .EXIT PRES=15.; .EFFICIENCY=0.86; .SR=0.07;
ST _LP1.PARM .EXIT PRES=5.; .EFFICIENCY=0.87; .SR=0.05;
ST_LP2.PARM .EXIT PRES=1.; .EFFICIENCY=0.87; .SR=0.05;
ST_LP3.PARM .EXIT_PRES=0.066; .EFFICIENCY=0.87; .SR=0.0;
SC_1.PARM .EXIT_PRES=0.066;

PUMP_SC.PARM .EXIT PRES=15.0; .EFFICIENCY=0.90;
PUMP_FW.PARM .EXIT_PRES=180.0; .EFFICIENCY=0.90;
PUMP_BFP.PARM .EXIT PRES=190.0; .EFFICIENCY=0.90;

Here, all parameters for the feedwater heaters were taken at their default values. For
three of the model parameters -- HX BOIL.HEAT, PUMP _BFP.EXIT PRES, and ST IP.SR
-- the values assigned in the DATA statement will be used only as initial guesses in the
VARY statements. The parametric values assigned must lie within the lower and upper
bounds used in the VARY statements.

This completes all the input necessary to do a system run for this problem.
However, additional user-imposed constraints (those that cannot be met simply by setting
values of the model input parameters) may be added to the system before the run is
made. For instance, it might be desired to determine the inlet liquid/steam mass flow
rate to the drum such that the gas temperature from the boiler is 1650 K. This
constraint would be accomplished by adding

VARY IN_H20.M = * 1 50
CONS HX BOIL.FLH.TEMP = 1650

to the appropriate subsystem, which could be an additional subsystem encompassing the
original one around the steam/water path and including the flow paths of AIR, FUEL, and
GAS (at least, down through the boiler model). Alternatively, these statements could be
included in the original subsystem to satisfy the model demand constraints and recycle
loop constraint by enlarging that subsystem to include the additional AIR, FUEL, and
GAS paths.

Appendix D shows the entire SALT input for this problem, as well as the resulting
outputs. All of the outputs, other than those generated by the mathematical utilities
(i.e., equation solvers and optimizers), are actually generated by the models themselves.
Thus, if the outputs are unsatisfactory, the user need only change the models, not the
SALT code. Some attempt has been made to keep the model outputs reasonably similar
in appearance, although differing amounts of output data are generated by different
models. Usually, only the model parameters are printed out for each model output entry;
the flows are printed out by the SYST model's output entry. Because the flow tables,
power summary table, ete. are printed by the SYST model, it is best not to have other
models appear after that model in the SALT input. The model output entries are called
in the order of their appearance within the PROCESS statements. Because SYST uses
the substructures of the other models in calculating power, any model with a POWER
substructure should come before the SYST model.

70

The table of output by flows printed by the SYST model actually will be the
values of the flows saved in the models' substructures of FLH, FLC, etc. These values
usually represent the exit flow conditions, except where the flow is an input flow to the
model. For example, the second flow to the MX model (as printed out in the flow-table
summary) would be the input to that model and would usually be the last model using that
flow.

Two other types of output are generated by the SALT code. The first is the
output generated by the mathematical procedures, and the second is a summary of the
success or failure of such procedures. The first type of data, generated while the code is
attempting to complete the subsystem task, is printed before the model output entries
are called (unless such entries are specified within the subsystem loop).

Varying amounts of information may be generated, depending on the value of the
PRINT switch specified in the SWITCH statement. If PRINT is equal to zero, no output
is generated. If PRINT is equal to one, the output generated consists of the name of the
subsystem; the iteration number being performed (denoted "N="); the objective function
or the sum of the squares of the constraint violations, depending on whether or not the
problem is an optimization (denoted "F="); the values of the independent variables -- i.e.,
the VARY parameters (denoted as "X="); and the values of the constraint violations
(denoted "C="). In an optimization, the constraints are reordered from their order of
appearance within the SALT input so that the equality constraints appear first, followed
by any inequality constraints.

For larger values of PRINT, additional output will be generated to help identify
convergence problems. This additional output (to be discussed later) requires some
familiarity with the mathematical procedures.

The success/failure data are used to summarize the final iteration of all
subsystems. This information, which is printed whenever the system problem calls the
equation solver or optimizer (regardless of the value of the PRINT switch), is always the
last output generated by the SALT code. The data include the subsystem name and a
statement of the type of termination (normal or otherwise), the final objective-function
value or the sum of the squares of the constraint violations, the variable values and their
names, the constraint violations, and the constraints themselves.

5.3.2 Open-Cycle Magnetohydrodynamic Power Plant

Figure 15 shows a simple open-cycle MHD plant; the system configuration is
basically the same as that shown in Fig. 14, but with the addition of an MHD topping
cycle consisting of a nozzle (NZ), an MHD channel (MG), and a diffuser (DF). In order to
provide a sufficiently high combustion temperature, the inlet air flow has been mixed
with an additional oxygen flow before being preheated and compressed. The compression
(to 6 atm) is necessary for the MHD channel's operation. By tracing through the AIR,
FUEL, GAS, and STM flows, one may write the PROCESS statement for the configura-
tion as follows:

FUEL_-1

FIGURE 15 Open-Cycle Magnetohydrodynamic Power Plant

IN IN
02 AIR
GAS_O2‘_' 'A_LJJ
CcP MX FUEL_1| INF
AR 02 coAL|
AIR_1
cB |eas_1| Nz MG PF HX HX |GASa| Hx HX HX DRY [sk | GAS_1
1 1 1 1 BOIL SH e RH AIR |Ec0N 1 1
LiQ_1
STM-1
STM_1
N | Lie | sp | | ST ST ST ST ST]r sT |sT™M1 | sc
H20 1 HP1 HP2 1P LP1 LP2 W LP3 1
Lia_1 STM_HP1 STM_HP2 STM_1P STM_LP1 STM_LP2 1stu-ouu
STM_DUM STM_I
via_1[pump| Lia_1| mx [_STM_1| FH ,J FH | _STM-1[pEAR /l FH J FH pump| STM_1[mx
BFP FW HP1 HP2 1 LP1 LP2 sc sc
o
STM_HP1 P;‘\'fvp STMLP1 STM_LP2
STM_HP2

1L

72

PROCESS
GAS_02-> IN_02
AIR 1-> IN AIR MX 02 <-GAS_02 CP_AIR HX AIR:C
FUEL 1-> INF_COAL DRY_1:C CB_l <-AIR_1 =->CAS_l
GAS 1-> NZ_1 MG_l:H DF_l

LIQ 1-> IN H20 SD_1 =->STM_1
STM 1-> HX_SH:C ST_HP1 ->STM_HP1
= ST_HP2 ->STM_HP2
HX _RH:C ST_IP ->STM_IP
ST LP1 ->STM LP1
ST_LP2 ->STM_LP2 ST_LP3 ->STM_DUM
sc_1
STM_HP1-> FH_HP1:H <-STM_DUM
STM_HP2-> FH_HP2:H <-STM_HPl
STM LP1-> FH LPl:H <-STM_HP2
STM_LP2-> FH_LP2:H <-STM_LPl
STM 1-> MX_SC <-STM_LP2
5 PUMP_SC HX_ECON:C FH_LP2:C FH_LP1:C
DEAR_1 <-STM_IP
PUMP_FW FH_HP2:C FH_HP1:C
LIQ 1-> MX_FW <-STM_l
¥ PUMP_BFP HX_BOIL:C IN_H20:CYCL

GAS_1-> HX BOIL:H HX _SH:H HX RH:H
HX_AIR H HX ECON:H DRY 1:H SK_1
NULL-> Rl e L :0UT

According to the documentation for the MG model, the hot-side entry should be called
before the cold-side entry; thus, the GAS flows through the topping cycle are specified
before the STM flows. As with the fossil/steam-plant example, the only demand-type
models are the steam-drum model and the deaerator model, and the only closed loop is
that of the water/steam flow. Both the demand model constraints and the closure of the
recycle loop can be accomplished exactly as in the system considered in Sec. 5.3.1.

The only additional information needed would be typical parametric values for
the nozzle, MHD channel, diffuser, and oxygen-flow-initiator models. For the NZ model,
only the efficiency and exit velocity need to be given. The DATA statement might
include the following:

NZ_1.PARM .EFFICIENCY=0.90; .EXIT_VELOCITY=750;

For the diffuser, the pressure-recovery coefficient and the exit velocity are required; a
typical set of these parameters might be

DF_1.PARM .PRES_RECOVERY_COEF=0.50; .EXIT_VELOCITY=25.0;

73

For the oxygen initiator (IN 02), the parameters might be taken as

IN_02.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=2.0;
.X02=1.03

and for the MHD channel, a minimal specified set of inputs might be

MG_1.PARM .B_FIELD=6.0; .EXIT PRES=0.85;
.LOAD_FACT=0.7; .WALL_TEMP=1850.;

The other model parameters could be treated as in Sec. 5.3.1, with the exception
of the combustor. The combustor model has an option for potassium seed injection to
make the combustion gases electrically conductive (a requirement for the MHD channel's
operation). The potassium-atom concentration needed in the combustion gases is
approximately 1% by weight, which is defined using the combustor parameter (K_FRAC):

CB_1.PARM .K_FRAC=0.01;

Appendix E shows the SALT output for this problem.

5.3.3 Solid-Oxide Fuel-Cell System

Figure 16 shows a typical solid-oxide fuel-cell plant with a simple steam-turbine
bottoming cyele. Tracing through the flows as labeled in the figure, we can represent
the system configuration by the following PROCESS statement:

PROCESS
STM_MIX-> IN MSTM CP_STM
GAS_AN-> 1IN GAS CP GAS HX 1:C MX_STM <-STM_MIX HX_A:C
AIR_1-> IN AIR CP_AIR1 HT INTER CPAIR2 HX_C:C
GAS_AN-> SOFC_1 <-AIR 1 MX BURN <-AIR_1
SP_BURN ->AIR_1
AIR_1-> HX C:H
CAS_AN-> HX A:H MX AIR <-AIR_l
HX FB:H GT 1 HX ST:H SK_1
STM 1-> IN_STM HX ST:C HX FB:C HX_l:H ST 1 ->STM_DUM
5 SC_1 PUMP_SC IN_STM:CYCL
NULL-> SYST 1 * *:0UT

The fuel-cell system, using methane as the fuel, will require methane/steam
reforming to produce carbon monoxide and hydrogen. Such reforming processes are
usually activated only within a catalytic environment, so chemical-equilibrium
calculations for the gas flows may incorrectly represent the flow's species
concentrations. In this case, the correct way to handle the gas compositions is to take
directly into account the kineties of the situation inside the component models, without
making use of the chemical-equilibrium code. Most models, at present, do not do this, so
an approximation must be made.

In our approximation, the gas-flow compositions are frozen except at those
locations where near-equilibrium chemical conditions would prevail. These locations

STM.

w | Mx [cp
MSTM STM
AS AN GAS.AN AS_AN GAS.AN AIR.1 AIR_1

IN |GAS.AN[cp | HX Mx |- HX | HX cp | AR [ur | AR [cp | AR [1y
GAS GAS 1 STM)| e By c AIR2 INTER AIR1 AR

e SOIFC

GAS.| |AIR.1
N STM_1 ST | STM.DUM aN
ST™ 1 MX
BURN
GAS.AN
A
SIM PUMP) sc GAS.AN sp AIR_1
sc 1 BURN
STM_1
STM_1
GAS.AN MX AIR.1
AIR
sK s HX ar HX
1 [GAS-AN) & [aas.an| T |aasan| P GAS_AN

FIGURE 16 Solid-Oxide Fuel-Cell System

vL

7

might be downstream of a reformer, or they might follow a burning process or some
other high-temperature process. In order to freeze and unfreeze the gas-species
concentrations, a parameter within the gas properties code (denoted GASFRZ) should be
set to one (for freezing) or zero (for unfreezing). This parameter is declared within the
GP model's interface and can be set using the PLI key word.

In order to include nonequilibrium effects within the system modeling, the
PROCESS statement can be split into several statements and the PLI key word used
along with GASFRZ to effectively turn chemical equilibrium calculations on and off
along the flow path. Initially, all the gas compositions may be frozen and then, right
before the SOFC model, be unfrozen. Technically, the AIR flow would not need to be
frozen; however, it consists only of nitrogen and oxygen, so very little error will occur if
it is frozen also. The flows could be frozen following the mixer that represents the
burner. Evaluation of the thermodynamic properties of a flow is considerably faster with
frozen compositions, because the chemical equilibrium calculations are bypassed. With
the PLI statements included, the system configuration would become the following:

PLI GASFRZ=1;
PROCESS
STM_MIX-> IN MSTM CP_STM
GAS_AN-> IN GAS CP GAS HX 1:C MX STM <-STM_MIX HX A:C
AIR 1-> IN AIR CP_ “AIRL HT INTER CP AIR2 HX c:C
PLI GASFRZ=0;
PROCESS
GAS_AN-> AIR_1-> SOFC_l
GAS_AN-> MX | BURN <—AIR 1
SP BURN ->AIR_ i
PLI GASFRZ=1;
PROCESS
AIR_1-> HX C:H
GAS_AN-> HX A:H MX_AIR <-AIR 1
HX FB:H GT 1 HX ST:H SK 1 .

ST 1=> IN STM HX_ ST:C HX FB:C HX 1:H ST_1 ->STM_DUM
SC_1 PUMP_SC IN_ STM:CYCL™
NULL-> SYST_l *_*'OUT

There are no demand model constraints, so the closure of the single steam-
recycle loop now must be considered. The enthalpy and pressure need to be closed.
Closure of the pressure is achieved by setting IN STM.P equal to PUMP_SC.EXIT PRES.
The enthalpy closure could be established in several ways; here, we vary the steam mass
flow rate until the enthalpies match. A subsystem (consisting of the steam loop) will be
iterated over the following statements:

VARY IN_STM.M
CONS IN_STM.DH

No fuel-flow or stream combustor model was used in representing this fuel-cell
system; the methane flow was initiated using an IN model. Because no model that
generates values of POWER.INPUT would have been used (the IN model would generate
such a value, but only when called with the INCYCL entry), the efficiency calcula-
tions performed by the SYST model would not be correct. To overcome this difficulty,

76

the IN_GAS.POWER.INPUT parameter is assigned a value using the higher heating value
of the methane and a PL/I statement. This PL/I statement is placed within the
configurational statements before the SYST model (which makes use of this parameter) is
called:

PLI IN_GAS.POWER.INPUT=IN_GAS.PARM.M*55.5E6;

Other changes to the power structures can be introduced at the same time. For example,
the fuel-cell model does not include an inverter efficiency, so one might adjust its
produced power to reflect such an inverter loss as follows:

PLI SOFC_l.POWER.PRODUCED=0.96*SOFC_1.POWER.PRODUCED;

Taking into account all of these considerations, we obtain the complete SALT
input (excluding the DATA statement) for this fuel-cell system as follows:

PROCESS GP_1:IN
PLI GASFRZ=1;
PROCESS
STM_MIX-> IN_MSTM CP_STM
GAS_AN-> IN_GAS CP_CAS HX_1:C MX_STM <-STM_MIX HX_A:C
AIR_1-> IN_AIR CP_AIRl HT INTER CP_AIR2 HX C:C
PLI GASFRZ=0;
PROCESS
GAS_AN-> SOFC_l <-AIR_1 MX_BURN <-AIR_l
SP_BURN ->AIR_1
PLI GASFRZ=1;

PROCESS
AIR_1-> HX_C:H
GAS_AN-> HX_A:H MX_AIR <-AIR_l
HX FB:H GT 1 HX ST:H SK 1
SYSBEG A a % = .
VARY IN_STH.PARM =% 1.0 10.0
CONS IN STM.DH = 0.0
PROCESS -
STM_1-> IN_STM HX_ST:C HX_FB:C HX_l:H ST_1 ->STM_DUM
SC_1 PUMP_SC 1IN STM:CYCL
SYSEND A

PLI IN_GAS.POWER.INPUT = IN GAS.PARM.M*55.5E6;
SOFC_1.POWER.PRODUCED= 0.96*SOFC_1.POWER.PRODUCED;
PROCESS
NULL-> SYST_1 * %:QUT

A typical DATA statement for this problem might be the following:

DATA
IN_GAS.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=1.0;
.XCH4=1.0;
IN_STM.PARM .ID='H20'; .T=823.0; .P=150.; .M=5.0;
IN_MSTM.PARM .ID='H20'; .T=298.15; .P=1.0; .M=1.60;
IN_AIR.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=30.0;

77

.X02=0.21; .XN2=0.79;
HX_1.PARM .T_SET(2)=573.0;
HX_A.PARM .T_SET(2)=1073.0;
HX C.PARM .T_SET(2)=1073.0;
HX FB.PARM .T_SET(1)=800.0;
HX ST.PARM .T_SET(1)=353.0;
CP_AIR1.PARM .EXIT PRES=3.5; .EFFICIENCY=0.85;
CP_AIR2.PARM .EXIT PRES=12.0; .EFFICIENCY=0.85;
HT_INTER.PARM .T_SET=318.0;
CP_GAS.PARM .EXIT_PRES=13.0; .EFFICIENCY=0.85;
CP_STM.PARM .EXIT PRES=12.0; .EFFICIENCY=0.85;
SOFC_L.PARM .CELL_CURRENT=1.5686ES; .NO OF CELLS=230;
.CELL_TEMP=1273} e 2
SP_BURN.PARM .SPLIT_RATIO=0.7;
ST_L.PARM .EXIT PRES=0.180; .EFFICIENCY=0.82;
SC_L.PARM .EXIT PRES=0.180;
GT_l.PARM .EXIT PRES=1.0; .EFFICIENCY=0.87;
PUMP_SC.PARM .EXIT PRES=150.0;
SYST_1.PARM .POWER_HEAD PTR=POWER_HEAD PTR;
.FLOW_HEAD_PTR=FLOW_HEAD_PTR;

Many other parameters for these models exist. For example, if heat-exchanger surface-
area calculations were important, additional parameters would have to be specified.

Appendix F Shows the SALT output for this problem.

5.3.4 Liquid-Metal Magnetohydrodynamic System

Figure 17 shows a liquid-metal MHD system employing a Brayton-cyecle helium
gas loop and a sodium-metal liquid loop. The models used for liquid-metal MHD systems
treat the two-phase, two-component flows as separately specified flows. Thus, even
though only a single two-component flow enters a combonent, each flow component is
specified as a different flow.

The two-phase, two-component flow entering the liquid-metal MHD generator
model (MMHD) is initiated by the two inlet models, one for the helium component (IN_
GAS) and one for the liquid-sodium component (IN_LIQ). These two flows pass through
the generator model, a two-phase nozzle model (TPNZ), and a liquid/gas separator model
(SEPR). This last model, which separates the two flows, generates two additional flows
representing liquid and gaseous carry-overs in the gaseous and liquid flows, respective-
ly. These carry-over flows would have to be dealt with separately in an actual system,
but for simplicity we will specify their flow rates as zero and assume that the separator
separates the two phases perfectly. The gaseous flow from the separator is then passed
through the hot side of a regenerator modeled as a heat exchanger (HX REG), a radiator
modeled as a heater with a negative heat load (HT_COOL), a gas compressor (CP_GAS),
and (finally) the cold side of the regenerator. The liquid flow from the separator passes
through a liquid-metal diffuser (MDIF_1), a heater (HT_LIQ), and a liquid-metal nozzle
(MNOZ 1). The gaseous and liquid flows are then mixed in the TPMX 1 model and cycled
back into their respective initiator models. The whole configuration is represented by
the following PROCESS statement:

78

GAS_1 GAS_1
cP | GAS-1 | HT HX
GAS cooL REG
GAS.1 |
GAS -1
GAS_1| |N |GAS-
A
i GAS_1 GAS.1 GAS_CO
PR -
s ks [T ol T se1 L1Q_CO
LQ.1| N |LIQ-1
LiQ
LiQ.1 MNOZ| LIQ-1 HT | L1Q-1 |MpIF| _ LIQ-1
1 LiQ 1

FIGURE 17 Liquid-Metal Magnetohydrodynamic System

PROCESS
GAS_l-> IN_GAS
LIQ_1-> IN_LIQ
GAS_1-> LIQ 1-> MMHD 1 TPNZ_l SEPR_1 ->GAS_CO ->LIQ_CO
LIQ 1-> MDIF_1 HT_LIQ MNOZ_ 1
GAS_1-> HX REG:H HT COOL CP_GAS HX _REG:C
GAS_1-> LIQ_1-> TPMX 1
GAS_1-> IN_GAS:CYCL
LIQ_1-> IN_LIQ:CYCL

This system has one demand-type model, the TPMX, which requires that the two
inlet flows have the same pressure. This model assigns the difference in the inlet flow
pressures to the parameter PRES DIFF IN, which should be constrained to equal zero by
suitably varying some upstream condition in either the liquid or gaseous flows. For
example, the gas-compressor exit pressure could be varied to satisfy this constraint:

VARY CP_GAS.EXIT_PRES = * 40 60
CONS TPMX_1.PRES_DIFF_IN = 0.0

The system also has two recycle loops (both the gaseous and liquid flows close on
themselves). It is important to make the mass flow rates, temperatures, and pressures
match at the initiator models. In liquid-metal systems, it is also important to make the
velocities match; a large portion of the energy in liquid-metal flows is carried in the
velocity heads.

79

We have assumed perfect flow separation within the separator model, so the
mass flow rates will match automatically for any flow rates chosen. By choosing the
recycle point downstream of the TPMX model, we can close both loops by eclosing only
one; this situation exists because the TPMX model has common values for the pressures,
temperatures, and velocities of its exiting flows. The flow velocities out of the TPMX
are equal to the liquid velocities into the mixer; therefore, if the exit velocity of the
liquid-metal nozzle is set equal to the initiator veloecity, the velocities for both flows will
be closed.

For the temperature closure, one might vary the heat input to the liquid flow
until the temperature difference in the liquid initiator went to zero, as follows:

VARY HT LIQ.HEAT = * 1E2 5E6

CONS IN LIQ.DT = 0.0
This procedure also would force IN GAS.DT to equal zero, provided the gaseous and liquid
flows were initiated at the same temperature. Alternatively, one might vary the liquid
initator temperature until IN_LIQ.DT equaled zero. (In this case, the IN_GAS.T
parameter should be set equal to the IN LIQ.T value by means of a PLI statement.)

For the pressure closure, some condition upstream of the IN_LIQ:CYCL entry
must be varied until IN_LIQ.DP is equal to zero. The two-phase-nozzle model's exit
pressure might be used for this task, as follows:

VARY TPNZ 1.EXIT PRES = * 3 47
CONS IN_LIQ.DP = 0.0

These statements would also close the gas-side pressure, provided that the gaseous and
liquid flows were initiated at the same pressure. As with the closure of any recyele loop,
some consideration of the variables used to close the loop is recommended. For example,
varying the MMHD.EXIT PRES would not achieve tlosure, because the pressure
downstream of the TPNZ would be the same (i.e., TPNZ_1.EXIT_PRES) no matter what
pressure was chosen at the generator's exit.

The complete SALT input statements (excluding the DATA statement) for this
problem can be written as follows:

PROCESS GP_1:IN
SYSBEG A
PROCESS
GAS_1-> IN_GAS
LIQ_1-> IN_LIQ
GAS_1-> LIQ 1-> MMHD 1 TPNZ 1 SEPR_1 ->GAS_CO ->LIQ_CO
LIQ 1-> MDIF 1 HT_LIQ MNOZ_1
GAS_1-> HX REG:H HT COOL CP_GAS HX_REG:C
GAS_1-> LIQ_1-> TPMX 1
GAS_1-> IN_GAS:CYCL
LIQ 1-> IN_LIQ:CYCL
VARY HT LIQ.HEAT = * lE2 SE6
CONS IN_LIQ.DT = 0.0

80

VARY CP_CAS.EXIT PRES = * 40 60
CONS TPMX_ 1.PRES_DIFF_IN = 0.0
VARY TPNZ_1.EXIT PRES = * 3 47
CONS IN _LIQ.DP = 0.0
SYSEND A
PROCESS

NULL-> SYST 1 * *:0UT

A typical DATA statement might be taken as:

DATA
IN GAS.PARM .ID='THR-HE'; .T=867; .P=50.0; .V=25; .M=1.0;
IN LIQ.PARM .ID='THR-NA'; .T=867; .P=50.0; .V=25; .M=100.;
MMHD 1.PARM .EXIT PRES= 24.0; .EFFICIENCY=0.80;
TPNZ_1.PARM .EXIT PRES=20.0; .EFFICIENCY=0.90;
SEPR_1.PARM .VELOCITY HEAD RATI0=0.90;
HX REG.PARM .HEAT=6E4;
HT_COOL.PARM .HEAT=-6.5E5;
HT_LIQ.PARM .HEAT=1.0E6;
CP_GAS.PARM .EXIT_PRES=50.0 .EFFICIENCY=0.90;
MDIF 1.PARM .EXIT VELOCITY=15.0; .EFFICIENCY=0.
MNOZ 1.PARM .EXIT VELOCITY=25.0; .EFFICIENCY=0.
TPMX_1.PARM .PRES_DROP=0.0;
SYST_1.PARM .POWER_HEAD PTR=POWER_HEAD_ PTR;

.FLOW_HEAD_PTR=FLOW_HEAD_PTR;

\D\D
- ..-

The gas and liquid initiator models have been assigned the same temperature, pressure,
and velocity values; also, the MNOZ 1 exit velocity has been assigned the same value as
the flow-initiator velocities, in accordance with the discussion above. The other model
parameters have been assigned typical values. The input parameters for the liquid-metal
diffuser and nozzle models include the exit velocity rather than the exit pressure.

For this problem, the input statements listed above are all that are really
required. However, we can elect to impose some additional constraints on the inlet and
exit void fractions of the channel and also to maximize the system efficiency. A typical
set of inlet- and exit-channel void fractions might range from 0.55 to 0.85. Bearing in
mind that the TPMX_1 exit void fraction is the channel's inlet void fraction, we can
impose the void-fraction range over the channel by means of the following two inequality
constraints:

CONS MMHD 1.VOID FRACTION<O0.85
CONS TPMX 1.VOID FRACTION>0.55

The objective function is the system efficiency, which can be maximized by minimizing
its negative:

MINI -SYST 1.EFFICIENCY

Additional parameters must now be véried to provide for the additional degrees
of freedom needed for the optimization problem. These parameters might be any of the

8l

additional model inputs, such as IN_GAS.M, IN_LIQ.M, MMHD 1.EXIT_ PRES, or
HT_REG.HEAT. The size of the system is not specified, but it can be somewhat fixed by
keeping at least one of the mass-flow rates fixed (say IN_GAS.M = 1.0). The other
parameters would generate three additional degrees of freedom. If the HT REG.HEAT
were to be varied, one might impose an additional constraint on the regenerator to
prevent a pinch-point violation. For example, it might be appropriate to keep the exit
temperature out of the cold side at least 20 K lower than the entering temperature on
the hot side, where this last temperature is the same as the gas temperature leaving the
SEPR 1 model:

CONS HX REG.FLC.TEMP<SEPR_1.FLC1.TEMP-20.0

The complete SALT input statements for this problem, with these additional
constraints and objective functions, would be as follows:

PROCESS CP_1l:IN
SYSBEG A
PROCESS
GAS_l-> IN_GAS
LIQ_1-> IN LIQ
GAS_1-> LIQ l-> MMHD 1 TPNZ 1 SEPR_1 ->GAS_CO ->LIQ_CO
LIQ_l-> MDIF_1 HT LIQ MNOZ_I
GAS_1-> HX REG:H HT COOL CP_GAS HX REG:C
CAS_1-> LIQ_l-> TPMX 1
GAS_1-> IN_GAS:CYCL
LIQ_1-> IN_LIQ:CYCL
NULL-> SYST 1
VARY HT LIQ.HEAT = * 1E2 5E6 CONS IN_LIQ.DT = 0.0
VARY CP_GAS.EXIT PRES = * 40 60 CONS TPMX_l.PRES_DIFF_IN = 0.0
VARY TPNZ_1.EXIT PRES = * 3 47 CONS IN_LIQ.DP = 0.0
VARY HX REG.HEAT = * 2E4 4E6
CONS HX_REG.FLC.TEMP>SEPR_1.FLCl.TEMP-20.0 *
VARY IN LIQ.M = * 1.0 450 CONS MMHD_1.VOID_FRACTION < 0.85
VARY MMHD 1.EXIT PRES = * 8 48 CONS TPMX_1.VOID_FRACTION > 0.55
MINI -SYST 1.EFFICIENCY
SYSEND A
PROCESS
NULL-> * %:OUT
DATA
IN GAS.PARM .ID='HE'; .T=867; .P=50.0; .V=25; .M=1.0;
IN_LIQ.PARM .ID='NA'; .T=867; .P=50.0; .V=25; .M=100.;
MMHD 1.PARM .EXIT PRES= 24.0; .EFFICIENCY=0.80;
TPNZ_1.PARM .EXIT PRES=20.0; .EFFICIENCY=0.90;
SEPR_1.PARM .VELOCITY_HEAD_RATI0=0.90;
HX_REG.PARM .HEAT=6E4;
HT_COOL.PARM .HEAT=-6.5E5;
HT LIQ.PARM .HEAT=1.0E6;
CP_GAS.PARM .EXIT PRES=50.0 .EFFICIENCY=0.90;
MDIF 1.PARM .EXIT VELOCITY=15.0; .EFFICIENCY=0.90;
MNOZ_1.PARM .EXIT_VELOCITY=25.0; .EFFICIENCY=0.90;

82

TPMX_1.PARM .PRES_DROP=0.0;
SYST 1.PARM .POWER_HEAD_PTR=POWER_HEAD PTR;
.FLOW_HEAD_PTR=FLOW_HEAD_PTR;

Appendix G shows the SALT output for this problem.

83

6 FAILURE CAUSES AND CURES

6.1 INTRODUCTION

Little was said in Chapter 5 about possible problems that might arise in
connection with the examples presented there. In reality, it is very possible that the
system problem that is set up will not converge to a solution. Of course, if no iterative
tasks -- such as establishing constraints or performing optimizations -- are defined, then
no system-level convergence problems will occur. However, even in these cases, some of
the models may involve iterative processes that (depending on the model's input
parameters and flows) could cause problems. Most of the existing models are sufficiently
robust that this usually will not happen, given reasonable model inputs. In this chapter,
we are more concerned with problems that result from system-level failures.

To consider all of the many different types of problems that can lead to a
convergence failure would be impossible. Failures can be classified broadly as being due
either to the inability of numerical procedures to handle the problem or to incorrect
posing of the problem itself. Each of these two general types of failures can be further
subdivided.

6.2 FAILURES DUE TO MATHEMATICAL PROBLEMS

If the physical problem is reasonably well posed (that is, there exists a solution to
the problem that can in fact be found by the system and subsystem tasks that have been
set up), then the failure probably results from some inadequacy in the mathematical
procedures. All of the mathematical procedures have various types of return messages
to indicate why they stopped. (One of these messages, of course, is that of "normal
termination," indicating that a solution -- possibly one of many -- was found, at least
within the accuracy specified by the user.) The reasons for termination are usually
different for equality-constraining tasks and optimization tasks, and the two will be
discussed separately.

6.2.1 Constraining Tasks

Subsystems that employ only equality constraints make use of an equation solver
(SOLVG) that is a hybrid steepest-descent/quasi-Newtonian update technique. This
technique, at present, has seven different terminating modes and four input parameters
(other than the equations and variables and their bounds), which can be used to control
the procedure. These four input parameters -- ACC, DEL, MAXIT, and PRINT -- can be
assigned specific values by using the SALT code's SWITCH statement.

The ACC parameter represents the maximum value of the square root of the sum
of the squares of the constraint violations (i.e., root-mean-square norm) that will be
permitted at normal termination. The constraint violations are defined as the expression

84

on the left-hand side of the constraint equation minus that on the right-hand side. Thus,
the constraint violation for

CONS EXPl = EXP2

is defined as EXP1 - EXP2. The default value of ACC is taken as 0.1, a value that may
seem somewhat large. However, for many system constraints the expressions represent
enthalpies, powers, ete. that may be on the order of 106, 1f a subsystem is set up with
constraint violations within a much smaller range, then ACC should be set to a suitably
small number.* It is important to consider the subsystem's constraints when defining a
value of ACC.

For problems with one large constraint violation and one small constraint
violation, it is usually enough to set the value of ACC necessary for reasonable
convergence of the larger constraint. The reason for this is that, internally, the equation
solver will scale all of the constraints so that they are considered approximately
equally. As the larger constraint violations are driven smaller, the smaller constraint
violations are driven even smaller. The internal scaling, which depends on the initial
Jacobian of the set of equations defining the constraints, is not infallible.** It is always
best, even with normal termination, to look at the individual constraint violations at the
solution point. The SALT code will provide a summary of the variables and constraint
violations for each subsystem task.

One failure mode of the equation solver involves simply hitting the maximum
number of iterations specified by the MAXIT parameter, which has a default value of
40. For large problems, or problems that are extremely nonlinear, this value may be
inadequate. Hitting the maximum number of iterations does not, in itself, indicate that
the equation solver cannot solve the problem. However, unless the problem is very large
(i.e., MAXIT should at least be greater than the problem dimension), MAXIT should not
be set to an arbitrarily large number. Where the problem has been run and the MAXIT
limit hit, the results of such a run should be examined before the limit is changed. The
equation solver may, in fact, be having great difficulty with the problem, and simply
increasing the limit of MAXIT may produce only an even longer unconverged computer
run.

The following basic behavior patterns can indicate that the equation solver is
having difficulties with the problem:

1. During the iterations, the values of the root mean square of the
constraint violations do not seem to be getting smaller. The value

*One typical error that a new user might make would be to define a subsystem with a
constraint (say, some flow quality) without setting ACC to some smaller value (say,
10™%). Quality being in the normal range of zero to one would mean that (without ACC
redefined) a solution would be found with quality constrained to within only 0.1 of its
required value.

**The scaling can be changed by selecting a new starting point with a different Jacobian.

85

of the root mean square of the constraint violations is printed out,
along with the iteration number, as "N=" and "F=" whenever
PRINT>0.

2. The equation solver's parameter BASE, which is printed out when
PRINT>1, is not getting smaller with the iterations. The value of
BASE is the sum of the squares of the scaled constraint violations.
If BASE is getting smaller but the root mean square is not, it may
mean that there is still no difficulty and the maximum number of
iterations could be increased to obtain convergence.

3. The equation solver's parameter MU is becoming larger. The
parameter MU, which also is printed out whenever PRINT>1,
represents a measure of the relative weight between the steepest-
descent step and the quasi-Newtonian step. If MU is zero, a pure
quasi-Newtonian step is taken. As MU increases, a smaller and
smaller step is taken, weighted more and more in the direction of a
steepest-descent step. The steepest-descent step is along the
negative gradient of the root mean square of the constraint
violations (as a function of the varied parameters). A value of MU
greater than five or six is considered large. If MU is extremely
large (say, ten or more), the problem that has been set up is
probably near singular (that is, the constraints are almost linearly
dependent). In such a case, it would be unwise to simply increase
MAXIT to try to obtain convergence; the physical problem should
be reconsidered.

The equation solver also may fail if it runs into one of the user-imposed bounds.
These bounds are specified, along with the parameters being varied, within the VARY
statement. The equation solver can only work with %equality constraints; additional
inequality constraints on the independent variables of the problem act only as a
safeguard to prevent extremely large variations of the parameters. The equation solver
will attempt to locate the root of the equations within these bounds. Of course, no such
root may exist.

Where no root exists within the bounds, the bound being hit is indicated by
printing out an array, Y, that represents the scaled values of the VARY parameters.
These Y values are such that the lower and upper bounds are rescaled to 0 and 1. Thus,
those parameters greater than their upper bounds have their corresponding Y values
greater than 1, and those parameters lower than their lower bounds have Y values of less
than zero. The relative positions between the bounds of all other variables are also
indicated by the Y array. Thus, the bound that is causing the problem can be determined
and changed within the VARY statement.

It should not be assumed, where a bound is hit, that the root lies outside of the
bounds. At least for problems with dimension greater than one, it is possible that the
root to the constraint equations does lie within the bounds. However, due to the
technique employed by the equation solver, the iterations may tend to drive some of the

86

parameters out of the bounded region (and, later, back into the region) in order to find
the solution. Thus, even though a bound on a particular variable might have been
enlarged, the equation solver ultimately may find a root within the original bounds. If
such were the case, changing the initial starting value of the iterations might have
located the root without the necessity of enlarging one or more of the bounds.

Initially, the equation solver will attempt to determine the Jacobian of the
constraint equations by the finite-difference method. This Jacobian is then inverted to
determine the inverse Jacobian. After this initial inversion, no more matrix inversions
are performed; the Jacobian and inverse Jacobian are simply updated as the iterations
proceed. At least at the initial parameter values, then, the constraints should not be
linearly dependent and the Jacobian should be of full rank. Two simple failure modes are
easily checked at this point:

1. A particular constraint is independent of all the VARY parameters
within the subsystem; this would yield a row of zeros within the
Jacobian.

2. No constraint is influenced by varying one of the parameters; this
would yield a column of zeros within the Jacobian.

Both of these problems usually result from the physical problem itself, in which case the
problem constraints must be examined more carefully. Alternatively, the perturbations
of the VARY parameters used in determining the Jacobian may have been too small to
produce a change in the violations. These perturbations are evaluated using the DEL
parameter specified in the SWITCH statement. The perturbations of each VARY
parameter are calculated as the maximum of DEL and DEL times the difference in the
upper and lower bounds on the parameter. DEL, at present, defaults to 1077 ™
particular constraint's initial violation is very large and there is only a weak influence
(i.e. small derivative) on the VARY parameter, the finite-difference calculation of the
Jacobian element may be wrong. This error can sometimes be rectified by enlarging
DEL, but this procedure can produce inaccuracies in the approximation of the Jacobian
elements for those constraints that are reasonably scaled. It may be necessary to locate
a better starting value, where the initial constraint violations are smaller. However,
such poorly scaled problems rarely occur.

Another termination mode is possible with poorly scaled problems when the
independent variables have to change by an extremely small value in order to drive the
root mean square of the constraint violations below ACC. In these cases, the
independent variables actually are almost at the root to the constraint equations anyway;
thus, such a termination may be as good as a normal termination.

Only one other termination mode exists for the equation solver. This mode is
indicated by the message "unable to find an improved point," which occurs when the
technique cannot find a reduced value of the root mean square of the scaled constraint
violations when even a small step is taken in the direction of the steepest descent. This
error can occur when the nonlinearities of the constraints are too difficult for the
equation solver. The equation solver tries to update the Jacobian and inverse Jacobian,

87

and after many iterations these attempts will accumulate numerical inaccuracies. Thus,
the calculated steepest-descent direction may be wrong. Although it would be possible
to restart at this point and form a new Jacobian, the present technique does not do this;
termination of the problem is preferred, with restart initiated manually after the failure
has been examined. This type of termination is the hardest type to resolve, but usually
it can be resolved by decomposing the problem into several sets of smaller-dimension
problems. Once a solution is obtained, the problem can be reformulated so that
convergence problems are not encountered. However, good reformations require
considerable experience and judgment.

6.2.2 Optimization Tasks

Many of the failure modes for the optimizer are similar to those for the equation
solver. For example, one can run into the maximum number of iterations. Again, the
iterations should be reviewed before MAXIT is simply increased. The same four
parameters -- ACC, DEL, MAXIT, and PRINT -- are used to control the iterations and
print out from the optimizer. The optimizer also can terminate as a result of
convergence of the independent variables. As with the equation solver, this outcome
might be sufficiently close to the solution -- however, for optimization problems it is
much more difficult to tell.

Normal termination for the optimizer is determined by the value ACC. The
iterations terminate when the following condition is satisfied:

|GRAD(F)*D| + suM(|LM*C|) < AccC

where GRAD(F) is the gradient of the objective function, D is the latest vector change in
the independent variables, LM is the vector of Lagrangian-multiplier estimates, C
represents the constraint violations, and SUM() represents summation. The constraint
violations are defined (as with the equation solver) even for "greater-than" inequality
constraints. For "less-than" inequality constraints, however, the right- and lefthand
expressions of the constraint are reversed in evaluating the constraint violation. The
value on the lefthand side of the above inequality is denoted "L" and is printed out along
with the iteration number "N," the objective function value "F," the independent variable
values "X," and the constraints "C," whenever PRINT is set greater than zero.

The termination condition specified above is often used. Because this condition
does not depend on estimates of LM (which are calculated by the code), however, it may
be difficult at times to define a reasonable value of ACC for termination. It may, in
fact, be necessary to run the problem once with some small value (say, 10™°) for ACC
and a small value (say, five times the problem dimension) for MAXIT, and then determine
whether or not ACC should be changed. For example, after running a problem, if the
printed values of "L" are very large (say, 1010), reasonable convergence may be obtained
for an ACC value of 10%. Alternatively, if the initial "L" were equal to 10™“, ACC might
have to be 1076 for reasonable convergence.

The optimizer can fail if it runs into a location where the linear approximations
to the constraints are locally dependent. This type of failure, detected within the

88

quadratic programming procedure called by the optimizer, is rather rare because of the
way the constraints are handled internally. The only solution to this termination would
be to restart the problem at another point. (The physical problem should also be
reviewed to detect any abnormality.)

Unlike the equation solver, the optimizer will not stop if a variable is running
into a bound, because the optimizer has more degrees of freedom to work with in
attempting to establish the constraints. However, it is possible to define inequality
constraints for which no feasible region (i.e., the region in which all inequality
constraints are satisfied) exists. The optimizer will try to find the feasible region; if it
cannot do so, it will terminate with the message "unable to find a feasible point."
Problems with only equality constraints may also run into this problem, because all
independent variables have bounds, which are additional inequality constraints. In this
case, the equality constraints cannot all be solved simultaneously within this bounded
region.

Two other failure modes exist for the optimizer. Both modes involve efforts to
find an improved point, starting along a search direction from the current point. This
search direction, determined by the quadratic subprogram, depends on the built-up
Hessian of the Lagrangian of the problem and on the finite-difference representations of
the gradients of the objective function and the constraints. The finite-difference
representations of the gradients are obtained (as in the equation solver) using the
perturbations of the independent variables by the parameter DEL. Thus, DEL needs to be
small enough for an accurate representation of the gradients and large enough to avoid
round-off errors. However, the gradients of the objective functions and constraints are
calculated more than once during the optimizer's iterations. The value of DEL used will
affect all the iterations, which is unlike the situation with the equation solver (where
DEL is used only for the initial Jacobian calculation).

The first failure mode associated with the line search involves having no
"downhill" direction in which to go. This difficulty sometimes occurs in later iterations,
when the accumulated numerical errors prevent the calculation of a good search
direction. Sometimes adjusting DEL to a smaller number and starting over can correct
this problem. The other mode involves an inability to locate an improved point along the
line (as measured by a line-search function). This difficulty also sometimes occurs during
later iterations and may be resolved by reducing DEL. Often, when this failure mode is
encountered, one is approaching a solution. The optimizer will attempt to find an
improved point along the search direction by pulling back towards the current point five
times; if it fails after five attempts, a message is printed and the optimization
terminates.

As was the case with the equation solver, when the PRINT switch is set to 2, 3,
or 4, additional information concerning the numerical iterations is printed out. When
PRINT is set to 2, information about the values of the Lagrangian multipliers, the
displacements to be attempted in the independent variables, and the initial and final
infeasibility norms is also printed. Higher values for PRINT will cause details of the
iterations within the quadratic programming routine to be printed out; these details are
not discussed here.

89

6.3 FAILURES DUE TO PHYSICAL PROBLEMS

Most of the failures due to numerical procedures discussed above would not occur
if reasonable problems were set up. In fact, most of the difficulties users have in running
the SALT code are caused by the actual problems that they define. These difficulties
can take many forms. Those forms that new users of the SALT code tend to encounter
are discussed here.

In general, when a problem cannot be made to converge after many attempts, it
is best to remove all the constraints and then restore them one at a time, with a separate
computer run for each constraint added. Using a parameter sweep rather than a VARY
statement may also help to determine the parameters' effects on the system; this
information can be of use in reformulating the problem.

Some of the less severe physical problems that arise will often cause the
equation solver or optimizer to print a failure message that immediately identifies the
problem. For example, it is often desired to constrain the heat-exchanger exit
temperature to some specified value by varying the heat load on the exchanger. This
constraint will work, provided that the fluid within the heat exchanger is in a single
phase. However, if the fluid enters the two-phase region, then the exit temperature will
be a function of the exit pressure, and many different values of the heat load will result
in the same temperature (probably not the one desired). In this case, if the heat load
initially caused the fluid to be in the two-phase region and this constraint was the only
one within the subsystem, the equation solver would fail initially with the message that
the constraint was independent of the varied parameter. On the other hand, had the
initial value of the heat load caused the fluid to be in a single-phase region, initially
varying the heat would yield some functional dependence on the exit temperature, but
the equation solver might later generate heat values for which the exit temperature
displayed no functional dependence. In this case, the equation solver might fail.

Problems in which a fluid enters a two-phase region are best handled by
constraining those thermodynamiec properties that are still independent within the
region. Thus, constraints on the exit enthalpy or quality from the heat exchanger would
be well posed even in the two-phase region. These multiphase fluid constraints may take
other forms. Rather than varying the heat load on the heat exchanger, the mass flow
rate for a fixed heater load might have been varied; the same problem would occur. If
additional parameters were being varied within the same subsystem to establish
additional constraints, the equation solver might persist in its efforts for a considerable
time before failing, and it might be difficult to determine by looking at the iterations
exactly why it failed.

A problem similar to the two-phase problem is that functional dependence of a
constraint on a parameter can be lost. This can occur when a model parameter is
bounded. For example, any variable that is cut off if it lies above or below some fixed
bound may cause constraints dependent on that variable to be independent of the
parameters being varied. This problem can result whenever the user defines constraints
using MAX or MIN functions, or when such funections are used within models. Had the log
mean temperature difference calculated within the heat-exchanger model been defined
to be zero whenever the hot- and cold-temperature profiles crossed over, it would be

90

extremely difficult to constrain that variable to a specific value by varying some other
parameter within the system. Another example involves constraining steam quality at
some point within the system. Usually, steam quality is defined to be between 0 and 1;
if, during the iterative process, the steam is superheated, then the quality is 1, and the
constraint will not show any functional dependence on the parameter being varied. The
solution to this problem (at least for subcritical pressures) is simply to let steam quality
be defined as a continuous quantity even above and below the two-phase region. Such a
definition is used in the SALT code.

The loss of functional dependence of a constraint on a variable being varied can
also occur because of the arrangement of the system models. For example, in a liquid-
metal MHD system it might be necessary to have a recycle-liquid loop. In order to close
the pressure at the recyele point, one might vary the exit pressure out of some model in
the liquid's flow path, only to set the exit pressure out of some other model further along
the path later. In this case, matching the pressure at the end of the path to that at the
beginning would be impossible; the varied exit pressure would have no effeet on the
pressure at the end of the path. The equation solver should clearly indicate that the
pressure constraint is independent of all varied parameters within the subsystem. It is
assumed that no other varied parameter affects the pressure downstream of the model
having the set exit pressure. In this case, there may be no message from the equation
solver, and one may have set up a problem with N constraints but with only N-1 variables
that really have any sufficiently strong influence on the constraints. Varying the
pressure might weakly affect one of the other constraints, so that there would be no
immediate termination message. This type of problem can be extremely difficult to
track down, even using the iteration output generated by the equation solver. One thing
to look for in problems such as this one is a very great increase in the value of MU,
because such problems will generate an almost singular Jacobian.

Another situation of this type can result from the mixing of flows. The simplest
flow mixer may take the exit pressure as the minimum of the input flow pressures. For
such a model, varying some parameter affecting the pressure upstream of one of the
mixer's input flows may or may not affect the mixer's outlet pressure. If the initial value
of such a parameter influenced the mixer's exit pressure, but during later iterations it did
not (due to the other input flow having a lower pressure), any constraint dependent on the
mixer's exit pressure would be difficult to converge on. The solution to this problem is,
of course, to have the flow-mixer model actually reflect both input flow pressures when
calculating the output flow. Even so, the larger input pressure may have only a weak
influence on the exit pressure.

Essentially, the examples considered so far have involved the loss of funectional
dependence of the constraints on the varied parameters. The situation can also occur
where the user has imposed several constraints to be established by variation of several
parameters and the constraints are linearly dependent. In this case, more parameters
exist than are needed, and one of the constraints and parameters should be removed. The
problem would have an infinite number of solutions. This sometimes occurs when one has
inadvertently tried to constrain both quality and enthalpy at the same point of a flow
stream. Problems such as these will definitely make the equation-solver parameter MU
grow large, because such problems are singular. Sometimes, by examining the variables

91

and constraints that change the most as MU grows large, one can isolate the constraints
that are dependent.

Inexperienced users of the SALT code sometimes generate several other common
problems that may not hinder convergence at all. These problems generally arise with
use of the multiple-entry models. For instance, the heat-exchanger model should never
have one entry called for a given value of the heat load and then have the other entry
called later within a subsystem in which the heat load is different; the influence of the
changed heat load on the first-entry flow would never be accounted for.

Another instance occurs when the heat exchanger is called with the parameter T_
SET set for the incorrect first entry. If T SET(2) were specified and the hot entry called
first, an incorrect heat load would be used. Similar mistakes may be made with other
multiple-entry components. Multiple-entry models have their advantages, but they
should be used with caution.

The decomposition of system configurations into nested subsystems can cause
convergence problems at times. For example, if the values of parameters that satisfy
constraints in an inner subsystem also affect the constraints in the outer subsystem, then
whenever the inner subsystem fails to converge, problems can be expected in the outer
system. Convergence within the inner subsystem should be kept at least as tight as in
the outer system; otherwise, the calculation of gradients by the finite-difference method
may be incorrect. It is possible with nested systems for the final iteration of all
subsystems to converge even if some of the inner systems fail to converge for some of
the iterations of the outer systems.

Most of the failure modes discussed here have been encountered by analysts not
totally familiar with systems-analysis concepts. The use of SALT has been valuable in
helping to increase understanding of system performance, and very few failures have
occurred as results of "bugs" in the SALT code. However, very few codes are truly "bug-
free." The authors would appreciate being informed 6f any problems encountered by
users of the SALT code.

92

7 ADDING NEW MODELS AND FLOW TYPES

7.1 THE INTERFACE FILE

The SALT code has been designed so that new models can be added as
effortlessly as possible, while models with arbitrary levels of complexity are still
handled. The key to maintaining the flexibility of handling arbitrary models lies in the
mechanism used for interfacing the constructed driver with the component models.
Numerous approaches have been employed in this interfacing problem; the one ultimately
used in the SALT code is relatively simple and has proven to be one of the most
flexible. The technique is simply to read in from an external file those variables that
must be declared for each component model used in a given system analysis. These
variables may be the names of model parameters that are passed to the component
models, the names of entry variables, or the names of other variables that simply need to
be included whenever a particular model is used.

The file that contains this interfacing information, called "INTF," is used by the
SALT code when constructing the PL/I driver for the problem under consideration. The
form of the interface consists of a series of header statements -- each with a 0, 1, 2, or 3
in the first column -- followed by other data that depend on the number. The type-0
statements are used to read in information that will be needed by the system models in
locating specific substructures of the models, the type-1 statements define the model
interfaces, the type-2 statements define the flow interfaces, and the type-3 statements
define additional coding that will be unconditionally inserted into the PL/I driver.

The specific form of the type-0 statement is as follows:
O0SUBSTRUCTURE_NAME SUBSTRUCTURE_HEAD_ PTR

Here, SUBSTRUCTURE_NAME is the name of the model substructure that will be
included within a linked list for use in system models, and SUBSTRUCTURE HEAD PTR
is a pointer variable that points to the beginning of this linked list.

Some of the substructures to be included in a linked list have variable names --
such as FLC, FLH, FLC1, ete. -- so the character "*" may be used at the end of a
SUBSTRUCTURE_NAME to refer to any substructures that begin with the specified
SUBSTRUCTURE _ NAME. All such substructures starting with those common characters
will then be included in the same linked list. Thus, to create a linked list for all of the
flow substructures starting with the characters "FL," one would write the following:

OFL* FLOW_HEAD_PTR

The type-1 statement header takes the form of a 1 in the first column, followed
by the name of the model. Statements following this header statement represent the
PL/I declarations of the model structure variable, followed by the declaration of the
model entry points, each on a separate line. The interface statements for the ST model,
for example, are as follows:

93

1ST
DCL
1 ST BASED,
2 NAME CHAR(16),
2 FLCl,
FNAME CHAR(16),
ID CHAR(4),
ATOM(8) FLOAT(16),
PROP,
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(16),
3 cowmp,
4 (XAR,XCH4,XCO,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2,
X0, XOH,X02,XS02 ,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOAT(16),
3 soL,
4 WTF FLOAT(16),
2 FLC2,
3 FNAME CHAR(16),
3 ID CHAR(4),
3 ATOM(8) FLOAT(16),
3 PROP,
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(16),
3 coMP,
4 (XAR,XCH4,XCO,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2,
X0,XOH,X02,XS02 ,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOAT(16),
3 soL,
4 WTF FLOAT(16),
2 PARM,
DDNAME CHAR(7),
MODE CHAR(15),
EXIT_PRES FLOAT(16),
EFFICIENCY FLOAT(16),
MECH_EFF FLOAT(16),
SR FLOAT(16),
EXT_MASS FLOAT(16),
FLOW_FACT FLOAT(16),
EXHAUST_LOSS FLOAT(16),
DM FLOAT(16),
WV FLOAT(16),
WHEEL_SPEED FLOAT(16),
CONS FLOAT(16),
VOL_FLOW_RATE FLOAT(16),
PRINT FIXED BIN(15),
2 POWER,
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOAT(16),
2 E_LOSS,
3 PTR POINTER,
2 COST FLOAT(16);
DCL STC ENTRY;
DCL STOUT ENTRY;

Wwww

LWLLWLWLWLWWLWLLWLWLWLWLWLWW

Other variables may be declared within the interface for each model, but no
particular variable should be declared in more than one model interface. If other
variables are declared, they should follow the declaration of the model structure
variable.

94

Although the statements following the header are simply PL/I declarations, some
checking of this input is done by SALT in order to retain the names of the 2-level
substructures and the entry names. In the case of the model declarations, some
programmers write the comma before the next line rather than after the line. The SALT
code checks for the presence of the string " 2 " in locating these 2-level substructures,
but it will not properly locate those preceded by ",2."

Usually, no executable statements appear within the interface; however, it is
possible to include whole PL/I procedures. Such procedures are compiled right into the
PL/I driver code, along with the other statements within the interface. Only those
statements belonging to the interfaces of models actually used in the system problem
will be brought into the driver code.

The type-2 statement header takes the form of a 2 in the first column, followed
by the name of a flow type. Statements following this header declare the form of the
flow. For example, the interface statements for the STM flow are as follows:

2STM
DCL 1 STM BASED,
2 NAME CHAR(16),
2 ID CHAR(4),
2 ATOM(8) FLOAT(16),
2 PROP,
3 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(16),
2 COMP,
3 (XAR,XCH4,XCO,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2,
X0, XOH,X02,XS02,XHCL ,XCH30H,XC,XCOS ,XNH3,XS,XCL) FLOAT(16),
2 sOL,
3 WTF FLOAT(16);

Like the model interfaces, only those flow-type interfaces actually used in the system
problem will be included in the driver code.

The type-3 statement header takes the form of a 3 in the first column, followed
by any comment or blanks. The lines following this header statement, up to the
occurrence of another header line, will be included in the driver code. For example,
declarations of unit-conversion variables might be included.

The different types of interfaces may be freely mixed. For readability, however,
it is useful to group all of the different types together. The INTF file may also reside in
more than one data set and be concatenated together at run time.

7.2 ADDING NEW MODELS

New PL/I component models may be added to the library of SALT models at any
time. One has only to develop the new model, taking into account a few rules necessary
for the SALT code to interface correctly with it, and to add the appropriate interface
statements to the INTF file.

95

Three basic rules are used in developing a new model. First, a model may have
any number of entry points, but the first several characters of the entry name should be
the name of the model as it appears within a PROCESS statement. The additional
letters, up to the PL/I limit of seven characters for entry names, define the separate
entry points. For example, the heat-exchanger model (HX) has the entry points HXH,
HXC, and HXOUT. When a model is referred to within a PROCESS statement without
the use of the colon and entry name, the "C" entry (as in HXC) will be called. The main
calculational entry should be specified as this "C" entry when new models are being
developed.

The second basic rule concerns the arguments that are passed to these entry
points. The first argument to all entry points is a pointer to the model structure
variable. The additional arguments that follow are pointers to the flow variables, which
should be arranged in the order of pass-through flows, input flows, and output flows to
the model. For the "OUT" entry (e.g., STOUT), the only argument should be the model
structure variable.

The third rule concerns the model structure variables themselves. The 1-level
name should be the name of the model. The first 2-level name should be NAME, declared
as a CHAR(16) variable. This variable is always defined by the SALT code as the name
of the model (including user-defined label) as it is called within the system problem.

Any other 2-level structures may be defined by the model developer to store
various input and output data from the model. The 2-level name POWER already has a
special structure; if used, it should correspond to that used by the existing models.

Beyond these three basic rules concerning the naming of the entry points, the
arrangement of the arguments, and the naming of the model substructure variables, any
type of PL/I coding may be used within the model. A model may even call FORTRAN
subroutines to perform its calculations. However, the output from a model must be a
funetion of only the input flows and model parameters. *Each time a model is called with
the same input values, it should return the same output values.

Once a model has been developed and debugged, it need only be compiled into the
model load library and the interface statements added to the INTF file. Usually, the
interface file will consist of the model structure variable and the declaration of the
entry points. The model structure has already been written, so it will need only to be
copied from the model into the interface file, with the possible addition of initial
attributes to define default input values. These additions to the INTF file should take
only a few minutes of editing time.

7.3 ADDING NEW FLOW TYPES

New flow types to be processed by newly developed models may be added to the
SALT code at any time ("flow type" refers to the structure of the flow variables).
Additional steam, liquid, or gas flows that are structurally the same as STM, LIQ, or GAS
are generated as needed within a system problem using the labeling option for flows (i.e.,
STM 1, STM 2, ete.). The existing flows of STM, GAS, and LIQ are technically of the

96

same type, but they have been defined as separate flow types to furnish the user of SALT
with some variety in the flow names to be used.

The addition of a new flow type is accomplished by adding the PL/I declaration
of the flow variables to the INTF file. Of course, this new flow will not be usable unless
new component models have been written to accommodate the new flow type. If system
models exist that print out flows, then these models may have to be modified to accept
the new flow types. Nothing further needs to be done to add a new flow type.

Each flow variable, like the model structures, should have as its first 2-level
element the variable NAME, declared as a CHAR(16) variable. This variable will be
assigned the name of the flow as used within the system problem by the SALT code.

1.

10.

11.

97

REFERENCES

Cook, J.M., User's Guide for GSMP, A General Systems Modeling Program, Argonne
National Laboratory Report ANL/MHD-79-11 (1979).

Berry, G.F., and J.M. Cook, Application of a General System Modeling Program,
Advances in Engineering Software 5(4):221 (1983).

Berry, G.F., J.M. Cook, and C.B. Dennis, Application of Polyalgorithm Optimization
to MHD Power Plant Design, Energy Systems 2(3) (1980).

Geyer, H.K., GPSAP/V2 with Applications to Open Cycle MHD Systems, Argonne
National Laboratory Report ANL/MHD-80-15 (1980).

Geyer, H.K., and G.F. Berry, A Preprocessor for Performing Lumped Component
Analysis, Energy Systems 2(3) (1982).

Berry, G.F., and H.K. Geyer, SALT - A Steady State and Dynamic Systems Code,
Proc. Third American Society of Mechanical Engineers International Computing in
Engineering Conf. (1983).

Berry, G.F., and H.K. Geyer, The SALT Steady-State Systems Code, Proc. Systems
Simulation Symp. on Fossil Fuel Conversion Processes, sponsored by Morgantown
Energy Technology Center, Morgantown, W.Va. (Dec. 1983).

Berry, G.F., and H.K. Geyer, The SALTD Dynamic Systems Code, Proc. Systems
Simulation Symp. on Fossil Fuel Conversion Processes, sponsored by Morgantown
Energy Technology Center, Morgantown, W.Va. (Dec. 1983).

»
Powell, M.J.D., A Hybrid Method for Nonlinear Equations, in Numerical Methods
for Nonlinear Algebraic Equations, Gordon and Breach Science Publishers, New
York (1970).

Powell, M.J.D., A Test Algorithm for Nonlinearly Constrained Calculations,
presented at the 1977 Dundee Conf. on Numerical Analysis, Dundee, U.K. (1977).

Hindmarsh, A.C., Numerical Integration of an Initial Value Problem for a System of
Ordinary Differential Equations, Argonne National Laboratory, Applied
Mathematies Division subroutine documentation (1980).

e e
AR IR, .

£ A5 R A B
Easieae ”ﬁw :
ALeRi; der¥

LR){ B w

T

AGEA R 8
St

99

APPENDIX A: JOB-CONTROL LANGUAGE
FOR IBM SYSTEM AT ANL

RS

r1‘4

-
e

101

APPENDIX A: JOB-CONTROL LANGUAGE
FOR IBM SYSTEM AT ANL

The preceding chapters have dealt with the data that must appear within the
STRUCT file. This file is usually the only file that must be changed when running a new
systems-analysis problem. However, other files are used by the SALT code in the process
of compiling the PL/I driver that represents the system under consideration. Essentially,
these other files are temporary work files or output files and are not usually saved from
job to job.

Three major steps are required in running the SALT system code after the
STRUCT file has been prepared. The first step is to run the SALT code itself and
translate the STRUCT file into a PL/I code; the second step is to compile this code, and
the third step is to actually execute the PL/I code. The performance of these three steps
has been conveniently arranged in an instream job-control-language (JCL) procedure
called SYSTEM for use on the ANL computer. The JCL using this procedure is as
follows:

//JOBNAME JOB TIME=2,REGION=350K,CLASS=W,MSGCLASS=W

//*MAIN ORG=LOCAL,SYSTEM=(S33A,S33B),LINES=5

//SYSTEM PROC

//ONE EXEC PGM=SALT

//STEPLIB DD DSN=Bxxxxx.SALT.LOAD,DISP=SHR

//STRUCT DD DDNAME=STRUCIN

//INTF DD DSN=Bxxxxx.SALT.INTF,DISP=SHR

//SYSDRV DD UNIT=SASCR,SPACE=(TRK,(2,1)),DISP=(NEW,PASS)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511)
//PLO EXEC PGM=IELOAA,PARM='NS,NA,NX,NAG,NOESD,NSTG,NOF,NOP'
//STEPLIB DD DSN=PLI.OPT.LINKLIB,DISP=SHR

//SYSIN DD DSN=*.ONE.SYSDRV,DISP=(OLD,DELETE)

//SYSLIN DD UNIT=SASCR,SPACE=(CYL,6),

// DISP=(NEW,PASS),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511)
//SYSPUNCH DD DUMMY

//SYSUT1I DD SPACE=(CYL,6),UNIT=(SASCR)

//TWO EXEC PGM=LOADER,REGION=150K,COND=(9,LT,PLO)

//SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR

dil. DD DSN=Bxxxxx.SALT.LOAD,DISP=SHR

//SYSLIN DD DSN=%.PLO.SYSLIN,DISP=(OLD,DELETE)

//SYSLOUT DD SYSOUT=%*,DCB=(RECFM=FB,LRECL=121,BLKSIZE=1573)
//SYSPNCH DD DUMMY

//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511)
//SYSPUNCH DD DUMMY

// PEND

// EXEC SYSTEM

//ONE.STRUCIN DD *

(contents of file STRUCT)

102

These JCL lines, which carry out the three basic steps referred to above, are
briefly described here.

The first line of any JCL, the JOB card, specifies the maximum time (in minutes)
that a job is permitted to run on the computer and the amount of main core used. The
parameter CLASS defines the priority of the job and may take the values of U (for
highest priority), W (for normal priority), X (for overnight service) or Y (for weekend
service). The MSGCLASS parameter may be set to W to fetch the output at the
computer terminal or to A to print the output on a line printer.

The second line specifies on-line printer destinations, the computer used, and the
maximum number of output lines. If a large number of parameter sweeps are to be
performed, the LINES parameter (which specifies the maximum number of lines in
thousands) may need to be increased.

The next line specifies the beginning of the SYSTEM procedure. The following
group of six lines carries out the first step, the translation of the STRUCT file. Here,
STEPLIB is the data set containing the SALT code, INTF is the interface file, SYSDRV is
the output file containing the generated PLI code, and SYSPRINT contains a reflection of
the STRUCT file and possible error messages.

The next eight lines, starting with //PLO, accomplish the compilation of the PLI
code. In this case, STEPLIB refers to the data set containing the PLI compiler, SYSIN is
the PLI code generated in the first step, SYSLIN is the compiled code, SYSPRINT
contains error messages from the compilation, SYSPUNCH is not used, and SYSUT1 is a
work file used by the compiler.

The next group of eight lines carries out the final step required in running the
compiled code. The SYSLIB file contains the concatenation of several data sets
representing the components of the system and various IBM-supplied procedures, such as
SIN, COS, ABS, etc. (These are in SYS1.PLIBASE for PLI codes.) The component models
and other mathematical procedures are referenced by the next two lines. Here, SYSLIN
refers to the compiled PLI code, SYSLOUT contains the loader map and loader error
messages, SYSPNCH and SYSPUNCH are not used, and SYSPRINT contains the major
output for the system analysis.

Finally, the next two lines close the instream procedure (//PEND) and execute
this procedure (//EXEC SYSTEM). For most systems-analysis problems, the above JCL
need not be changed from job to job. The rest of the JCL represents the STRUCT file,
preceded by the //ONE.STRUCIN DD * line.

NDIX B: ABBREVIATIONS FOR KEY WORDS

e

o ‘-?ﬂ}*ﬁx,h

o
i S
a3 4
owll g e
-
& y
-
i
: B

105

APPENDIX B: ABBREVIATIONS FOR KEY WORDS

The SALT code will accept abbreviations for some of the key words. These key
words and their abbreviations are as follows:

Key Word Abbreviation

PROCESS PROC
SYSBEG SYSB
SYSEND SYSE
CONSTRAIN CONS
CONTROL CONT

MINIMIZE MINI

¥ax oredi - sebioy

naltetvsmid A

2084
HAYE
b

2RO
WO 1 e
ﬂ/{!ﬂ; = ‘{)J‘*& iy

APPENDIX C: UNITS USED
IN SALT MODELS

109

APPENDIX C: UNITS USED
IN SALT MODELS

The units used throughout in the SALT models are SI units, with the exception of
pressure (specified in atmospheres). Those parameters (such as efficiency) commonly
expressed in percent are specified as fractions. Thus, 88% would be input as 0.88.
Angles (such as gravitational angles) are in degrees.

111

APPENDIX D: FOSSIL/STEAM POWER PLANT

"

PROCESS GP_1:IN

SYSJEG A
PROCESS
LIQ_1=> IN_H20 SD_1 ->STM_1
STH_1-> HX_SH:C ST_HP1 ->STM_HP1
ST_HP2 ->STH_KF2
HX_FH:C ST_IP ->STM_IP
ST_LP1 ->STH_LP1
ST_LF2 ->STM_LF2 ST_LP3 ->STHM_DUM
L ol
STH_HP1-> FH_HP1:H <-STM_DUM
STH_HF2-> FH_KP2:H <-STM_HP1
STH_LP1-> FH_LP1:H <-STH_HP2
STH_LP2-> FH_LP2:H <-STH_LF1
STH_1-> MX_SC <-STiI_LP2
PUNP_SC HX_ECON:C FH_LP2:C FH_LP1:C
DEARL'l) <-STH_IP
FUMP_FH FH_HP2:C FH_HP1:C
LIQ_1-> MY Fl e-5TH 1
PUIP_BFP HX_BOIL:C IN_H20:CYCL
VARY HX_EOIL.KEAT = * 1E1 25€E6

IN_H20.D4 = 0.0

CH'S

IN_KZ0.CP = 0.0
ST_IP.SR = % 0.01 0.20

113

FUI'P_EFP.EXIT_PRES = % 100 200

DEAR_1.PARM.QUAL = 0.0
SYSEND A
FRCCESS
AT2_1-> IN_AIR CP_AIR HX_AIR:C
FUEL_1-> INF_COAL DRY_1 CB_1 <-AIR_1 ->GAS_1
GAS_1-> HX_BOIL:H HX_SH:H HX_RH:H
HX_AIR:H HX_ECON:H DRY_1:H SK_1
NULL-> SYST_1 x_%:00T
DATA
IN_AIR.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=14.0;
.XN2=0.78; .X02=0.22;
IN_H20.PARM .ID='H20'; .T=0.0; .P=180.0; .M=75.0;
.Q=0.20;
INF_COAL.PARM .MASS=2.0; .C=0.5213; .H=0.060; .0=0.3152;%
.N=0.0079; .S=0.0085; .H20=0.227;
.ASH=0.0871; .HKV=20.743E6;
SO_1.PARM .QUAL=0.20;
CP_ATR.PARM .EXIT_FRES=1.15; .EFFICIENCY=0.88;
CG_1.FARM .ASH_DET=0.0;
DRY_1.PARM .H20_DET=0.05;
HX_EDIL.PARM .HEAT=12E6;

HX_SH.PARM
HX_RH.PATM
HX_ATR.PARM
HX_ECO!l. PARM

.T_SET(2)=811.3
.T_SET(2)=811.;
.T_SET(2)=500.;
HEAT=1E5;

ST_MP1.PARM .EXIT_FRES=100.; .EFFICIENCY=0.864; .SR=0.10;
ST_HPF2.PAPHM .EXIT_PRES=50.; .EFFICIENCY=0.84; .SR=0.10;
ST_IP.PARM .EXIT_PRES=15.; .EFFICIENCY=0.86; .SR=0.07;
ST_LP1.PARM .EXIT_PRES=5.; .EFFICIENCY=0.87; .SR=0.05;
ST_LP2.PARM .EXIT_PRES=1.; (EFFICIENCY=0.87; .SR=0.05;
ST_LP3.PARM .EXIT_PRES=0.066; .EFFICIENCY=0.87; .SR=0.0;

SC_1.PARM .EXIT_PRES=0.066;

FURP_SC.PARM
FUNP_FH. PARM
FUNP_BFP.FARM

SYST_1.PARM

LEXIT_FPES=15.0;

LEFFICIENCY=0.90;

LEXIT_PRES=180.0; .EFFICIENCY=0.90;
LEXIT_PRES=190.0; .EFFICIENCY=0.%0;
.FOHER_HEAD_PTR=PONER_HEAD_PTR;
.FLOW_HEAD_PTR=FLOW_HEAD_PTR;

LOOP: A N= 1 F= 1.2460E+10
X= 1.2CC0E+07 1.9C00E+02 7.0000E-02
C= -1.1162E+05 &.1000E+00 -6.3133E-02

LCOP: A
S= §.5277E+05 9.9000E-01 1.1525E+00
MU= 0.00230E+00

LOOP: A N= 5 F= 3.4243E+02
X= 1.8625E+07 1.8182E+02 1.2478E-01
C= -1.8505E+01 1.8750E-10 6.4744E-10
SCALE TERIINATICN, ACTUAL= 1.67040E-09 IN LOOP: A

IN_H20
1D=H20
TENP = 6.31148E+02
FRES = 1.80000E+02
VEL = 0.C0000E+CO
ENTH = 1.89132E+05
HASS = 7.50000E+01
SD_1

QUALITY = 2.00000E-01

HX_SH
MODE = DESIGH
TYPFE = COUNTER
DESIGN MASS FLOW RATES = 15.45 15.00 KG/S

NLET TENFERATURES = 1665.08 631.15 K
AVERAGE TEMPERATURES = 1343.92 721.07 K
DESIGN THERIMAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/W
CVEPALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K
LCG MEAN TEMP DIFFERENCE = 5.93089E+02 K
SFERRED = 1.32690E+07 W
HEAT TRANSFER SURFACE AREA = 2.23728E+04 SQ-M
HEAT FLUX = 5.93089E+02H/SQ-M
SURFACE TEMPERATURES = 1071.99 1071.99 K

ST_HP1

MODE = DESIGN

TURBINE EFFICIENCY = 8.40000E-01
MECHANICAL EFFICIENCY = 9.75000E-01
FOIIER FRCDUCED = 2.18482E+06

FLOW FACTCR = 2.36580E-05

DESIGH MASS FLOW RATE = 1.50000E+01
SPLIT RATIO = 1.00000E-01

VOL FLOW RATE = 4.36901E-01

EXHAUST LOSS = 0.00000E+00

ST_HP2

MODE = DESIGN

TURBINE EFFICIENCY = 8.40000E-01
MECHANICAL EFFICIENCY = 9.75000E-01
POHER FRODUCED = 2.09772E+06

FLOH FACTOR = 3.57563E-05

DESIGH MASS FLOW RATE = 1.35000€+01
SPLIT RATIO = 1.00000E-01

VOL FLOW RATE = 6.93773e-01

EXHAUST LOSS = 0.00000E+00

HX_RH

ST_IP

MCDE = DESIGN
TYPE = COUNTER
DESICN MASS FLOW RATES = 15.45

LLS

12.15 K6/S

INLET TEMFERATURES = 1022.75 624.86 K
AVERAGE TENMPERATURES = 878.57 717.93 K

DESIGH THERMAL RESISTIVITIES = 1.0000E+00
OVERALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K

LC3 MEAN TEMP DIFFERENCE = 1.55072E+02 K

HEAT TRANSFERRED = 5.47389E+06 H

HEAT TRANSFER SURFACE AREA = 3.52950E+04 SQ-M

HEAT FLUX = 1.55072£+02W/5Q-M

SURFACE TEMPERATURES = 867.68 867.68 K

{CDE = DESIGN

TURBINE EFFICIENCY = 8.60000E-01
MECHANICAL EFFICIENCY = 9.75000E-01
POZR FRODUCED = 3.87820E+06

FLCA FACTCR = 6.85866E-05

DESIGN MASS FLOW RATE = 1.21500E+01
SFLIT RATIO = 1.24777€-01

VOL FLOW RATE = 2.32286E+00

EXHAUST LOSS = 0.00C00E+CO

ST_LP1

MODE = DESIGN

TURBINE EFFICIENCY = 8.70000E-01
MECHAMICAL EFFICIENCY = 9.75000E-01
POWER FRCDUCED = 2.54706E+06

FLOW FACTOR = 1.77638E-0%

DESIGN MASS FLOW RATE = 1.06340E+01
SPLIT RATIO = 5.00000E-02

VOL FLOW RATE = 4.91983E+00

EXHAUST LOSS = 0.00000E+00

ST_LP2

MODE = DESIGN

TURBINE EFFICIENCY = 8.70000E-01
HECHANICAL EFFICIENCY = 9.75000E-01
POUER PRODUCED = 2.69830E+06

FLCH FACTCR = 4.53640E-04

DESIGN MASS FLOW RATE = 1.01023E+01
SPLIT RATIO = 5.00000E-02

VOL FLOH RATE = 9.15648E+00

EXHAUST LOSS = 0.00000E+00

ST_LP3

MODE = DESIGN

TURBINE EFFICIENCY = 8.70000E-01
HMECHANICAL EFFICIENCY = 9.75000E-01
PCUER FRODUCED = 3.22887E+06

FLCH FACTOR = 1.82963E-03

DESISN MASS FLOW RATE = 9.59715E+00
SPLIT RATIO = 0.00000E+00

VOL FLOW RATE = 9.65782E-02

EXHAUST LOSS = 0.00000E+00

EXIT PRESSURE = 6.60000E-02

0.0000E+00

0.0000E+00 SQ-M K/W

FH_HP1

HEAT= 2.78348E+05

su2ceoL= 5.55000E+00

AREA= 1.94183E+01
TTD= 2.76257E+01
DCTD= 6.05282E+01
HOP= 1.0Q000E-02

coP =
AREAS=
HEATS=
L3 =
LHTDS=
HTEMP=
CTENP=

FH_HP2

3

[C, RNV RN AN

.00000E-03
.43913E+01
.C6551E+05
.32132E+02
L78430E+01
L 16632E+02
.56675E+02

HEAT= 2.99649E+06

SUBCoOL= 5.5500CE+00

APEA= 2.36280E+01
TTD= 1.83660E+01
DCTD= 5.76532E+01
HORP= 1.00000E-02

cpR =
AREAS=
HEATS=
us =
LHTDS=
HTELP=
CTEHP=

FH_LP1

3

1
2
3
6
6
5

.00000€E-03
.49395E+01
.95660E+05
.03532€+02
.58512E+01
.24383E+02
. 18223E+02

HEAT= 2.69449E+06

SUSCo0L= 5.55000E+00

AREA= 2.28360E+01
TTD= 1.48050E+01
DCTD= 5.64551E+01
HDP= 1.00000E-02

cop =
AREAS=

FH_LP2

gy

9
8
0
6.
5
A

00000E-03
.51650E+00
.50713E+04
.40454E+02
36461E+01
. 17469E+02
.1030%E+02

HEAT= 1.90369E+06

SusCo0L= 5.55000E+00

AREA= 2.38097E+01
TTD= 9.75205E+00
DCTD= 3.75270E+01
HDP= 1.00000E-02

cop =
AREAS=
HEATS=
us =
LHTDS=
HTENP=
CTENP=

PUMP_SC

EXIT PRESSURE =

34

0
0
3
0.
3
5

0C000E-03
.00000£+00
.C0000E+00
.40000E+02
00000E+0C0
L72264E+02
.63112E+02

.00000E-03
.02755E+00
. 12636E+06
.17251E+03
.89255E+01
.01506E+02
.48577E+02

oUW

.00000E-03
.G3851E+00
.61804E+06
.37822E+03
866G21E+01
51321E+02
. 13570€+02

(GRS R R

00000E-03
33195E+01
52352E+06
13152E+03
59484E+01
42722E+02
0&833E+02

P Sl

00000E-03
33097E+01
81283E+06
45%84E+03
20382E+01
72864E+02
3.63112E+02

[R S R

1.50000E+01

EFFICIENCY = 9.00000E-01

116

00000E-03
18492€-01
00694E+04
90172E+03
29126E+01
84362E+02
. 19003E+02

(S NC, . N, I ot

.00000€E-03
.67756E-01
.87830E+0%
97282€+03
98039E+01
37253E+02
75245€+02

PUNaNOW

00000E-03
24430E-01
03979E+04
67761E+03
86916E+01
25117E+02
64540E+02

WP ®0OWw

.00000E-03
.41857E+00
.08588E+04
.60700E+03
.98565E+01
.72864E+02
3.31007E+02

N a0 a

5.78812E+02
5.18284E+02

5.31703E+02
4.764049E+02

4.19567E+02
3.63112E+02

3.67314E+02
3.29393E+02

17

HX_ECON
MODE = DESIGN
TYPE = COUNTER
DESIGN MASS FLOW RATES = 15.45 13.48 KG6/S

INLET TEMPERATURES = 584.49 327.61 K

AVERAGE TEMPEPATURES = 581.64 328.50 K

DESIGN THERIAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/W
OVERALL HEAT TRAMSFER COEF = 1.00000E+00 W/SQ-M K

LCS MEAN TEMP DIFFEREMCE = 2.53129E+02 K

HEAT TRANSFERRED = 1.000C0E+05 W

HEAT TRANSFER GURFACE AREA = 3.95055E+02 SQ-M

HEAT FLUX = 2.53125E+02H/Sq-M

SURFACE TEMPERATURES = 331.36 331.36 K

DEAR_1
QUAL= 6.4744E-10

PUHP_FH

EXIT FRESSURE = 1.80000E+02
EFFICIENCY = 9.00000E-01

PUHP_BEP

EXIT PRESSURE = 1.81818E+02
EFFICIENCY = 9.000005-01

HX_BOIL

MODE = DESIGN

TYPE = COUNTER

DESIGN MASS FLOW RATES = 15.45 75.00 KG/S
INLET TEMFERATURES = 2331.78 621.71 K

AVERAGE TEMFERATURES = 1998.43 626.43 K

DESIGN THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/W
OVERALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K
LOG MEAN TEHP DIFFERENCE = 1.34534E+03 K

HEAT TRANSFERRED = 1.86251E+07 W

HEAT TRANSFER SURFACE AREA = 1.38441E+04 SQ-M
HEAT FLUX = 1.34534E+03H/SQ-M

SURFACE TEMFERATURES = 986.43 986.43 K

IN_AIR

ID=GAS

TEMP = 2.98150E+02
FRES = 1.00000E+00
VEL = 0.C0000E+00
ENTH = -9.51020E+00
MASS = 1.40000E+01

CP_AIR

MODE = DESIGHN

EXIT PRES = 1.1500CE+00
EFFICIENCY = 8.30000E-01
MASS FACTOR = 4.04731E-02

M FACTOR = 1.00000E+00
PRESSURE RATIO = 1.15000E+00

HX_ATR

118

MCDE = DESIGN

TvPc = COUNTER

DESIGH HASS FLOW RATES = 15.45 14.00 KG/S

INLET TEMPERATURES = 734.40 311.91 K

AVERAG EPATURES = 659.44 405.96 K

DESIGN THERMNAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/W

OVERALL HEAT TRANSFTER COEF =
LCG MEAN TEMP DIFFEREMCE =
HEAT TRANSFERRED = 2.6E833E+06 W
HEAT TRAHNSFER SURFACE AREA =
HEAT FLUX = 2.53006E+02H/SQ-H
SUNFACE TENPERATURES =

INF_COAL

DRY_1

cs_1

SK_1

FUEL
FUEL

HHV= 2.07430E+07
MASS= 2.00C00E+00
FUEL WEIGHT FRACTIONS

CARBON HYCRCGEN OXYGEN
0.521300 0.0600C0 0.315200

FUEL HHV= 2.54927£+07

FUEL MASS= 1.62737E+00
H20_DET= 5.00000E-02

HZO RENQVED= 3.72632E-01
HEAT_REQUIRED= 9.17862E+05

FUEL HEIGHT FRACTIOH
CARBON HYDROGEN OXYGEN
0.640666 0.073739 0.337374

MASS BURNED = 1.45317E+00
HHV = 2.85437E+07

FUEL
FUEL
FUEL
HEAT LOSS FRACTICHN =
STOICHIOHETRY =
CARBON BURNOUT =
ASHH HASS REMOVED =

ASH MASS IN FUEL =

{ATER MASS IN FUEL =
SLURRY COHCENTRATION =
POTASSIUM MASS = 0.0C000E+00
SEED FRACTICN = 0.0C000E+00

0.00000E+00
1.09462E+00
1.00000E+00
1.74200E-01
0.00000E+00
8.13684E-02

FUEL ELEMENT FRACTIONS (AS BURNED)
ARGON CARBCN HYDROGEN
0.C00000 0.717467 0.083844

OXIDIZER ELEMENT FRACTIONS
ARGON CARSON HYDROGEN
0.000000 0.000000 0.000000

ELEMENT FRACTIOKNS
ARGCH CARBON HYDROGEN
0.000000 0.067468 0.008355

GAS

ENERGY REJECTED = 7.75985E+06 W

9.44006E-01

1.00000E+00 H/SQ-M K
2.53005E+02 K

1.06255E+04 SQ-M
431.39 481.39 K

NITROGEN
0.007900

SULFUR
0.008500

NITROGEN
0.00970%

SULFUR
0.010446

HEAT OF FCRM AS BURNED = -4.38836E+06

POTASSIUM NITROGEN
0.000000 0.010873

POTASSIUM NITROGEN
0.000000 0.756328

POTASSIUM NITROGEN
0.000000 0.686227

CHLORINE
0.000000

HATER

ASH
0.227000 0.087100

CHLORINE
0.000000

HATER

ASH
0.050000 0.107044

OXYGEN
0.483539

SULFUR
0.011699

CHLORINE
0.000000

OXYGEN
0.243672

SULFUR
0.000000

CHLORINE
0.000000

OXYGEN
0.266229

SULFUR CHLORINE
0.001100 0.000000

FLOW: LIQ_1
MODEL

IN_H20
so_1
HX_FH
PUHP_BFP
HX_BOIL

FLOW: STM_1
MODEL

so_1
HX_SH
ST_HP1
ST_HP2
HX_RH
ST_IP

g

)
2
i
2

LP2
LP3

ST,
ST,

A
(i

=
5¢
(7
o

PUHP_SC
HX_ECON
FH_LP2
FH_LP1
DEAR_1
PUHP_FH
FH_HP2
FH_HP1
HX_FH
FLOW: STH_HP1
HODEL
ST_HP1
FH_HP1
FH_HP2
FLOH: STM_HP2
HODEL
ST_HP2
FH_HP2
FH_LP1
FLOW: STH_IP
HODEL

ST_IP
DEAR_1

FLOH: STM_LP1
MODEL
ST_LP1
FH_LP1
FH_LP2

FLOW: STH_LP2
MODEL
ST_LP2
FH_LP2
Hx_sC

FLOW: STM_DUM
MODEL

ST_LP3
FH_HP1

PRES.
(ATHM)
1.800E+02
1.800E+02
1.768E+02
1.818E+02
1.800E+02

PRES.
(ATH)
1.800E+02
1.782E+02
1.000E+02
5.000E+01
4.950E+01
1.500E+01
5.000E+00
1.000E+00
6.600E-02
6.600E-02
6.600E-02
1.500E+01
1.485E+01
1.476E+01
1.463E+01
1.463E+01
1.800E+02
1.784E+02
1.768E+02
1.768E+02

PRES.
(ATH)
1.000E+02
9.900E+01
9.900E+01

PRES.
(ATH)
5.000E+01
4.950E+01
4.950E+01

PRES.
(ATH)
1.500E+01
1.500E+01

PRES.
(ATH)
5.000E+00
4.950E+00
4.950E+00

PRES.
(ATH)
1.000E+00
9.900E-01
9.900E-01

PRES.
(ATH)
6.600E-02
6.600E-02

TEMP.
(K)
6.311E+02
8.110E+02
7.202€+02
6.249E+02
8.110E+02
6.450E+02
5.176E+02
3.731E+02
3.113e+02
3.113E+02
3.113E+02
3.276E+02
3.294E+02
3.631E+02
4.103E+02
4.709€+02
4.740E+02
5.183E+02
5.567E+02
5.567E+02

TEMP.
(K)
7.202E+02
5.788E+02
5.788E+02

TEMP.
(K)
6.249E+02
5.317e+02
5.317e+02

TEMP.
(K)
6.450E+02
6.450E+02

TEMP.
(K)
5.176E+02
4.196E+02
4.196E+02

TEMP.
(K)
3.731E+02
3.673E+02
3.673E+02

TEMP.

(K)
3.113E+02
3.113e402

119

OUTPUT BY FLOW

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000€E+00

VELOCITY
(M/S)

0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)

0.000E+00

0.000E+00

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)

0.000E+00

0.000E+00

ENTH.

(J/KG)
1.891E+06
1.740E+06
1.642E+06
1.643E+06
1.891E+06

ENTH.
(J/KG)
2.495E+06
3.380E+06
3.231E+06
3.071E+06
3.522E+06
3.194E+06
2.949E+06
2.675E+06
2.330E+06
1.599E+05
2.275E+05
2.293E+05
2.367E+05
3.779E+05
5.777€+05
8.422E+05
8.636E+05
1.063E+06
1.249E+06
1.249E+06

ENTH.

(J/KG)
3.231E+06
1.375E+06
1.375E+06

ENTH.

(J/KG)
3.071E+06
1.127E+06
1.127E+06

ENTH.

(J/KG)
3.194E+06
3.194E+06

ENTH.

(J/KG)
2.949E+06
6.168E+05
6.168E+05

ENTH.

(J/KG)
2.675E+06
3.945E+05
3.945E+05

ENTH.

(J/KG)
2.330E+06
2.330E+06

MASS
(KG/S)
7.500E+01
6.000E+01
7.500E+01
7.500E+01
7.500€+01

MASS
(KG/S)
1.500E+01
1.500E+01
1.350E+01
1.215E+01
1.215E+01
1.063E+01
1.010E+01
9.597E+00
9.597E+00
9.597E+00
1.348E+01
1.348E+01
1.348E+01
1.348E+01
1.348E+01
1.500E+01
1.500E+01
1.500E+01
1.500E+01
1.500E+01

MASS
(KG/S)
1.500E+00
1.500E+00
1.500E+00

MASS
(KG/S)
1.350E+00
2.850E+00
2.850E+00

MASS
(KG/S)
1.516E+00
1.516E+00

MASS
(KG/S)
5.317E-01
3.382E+00
3.382E+00

MASS
(KG/S)
5.051E-01
3.887E+00
3.887E+00

MASS
(KG/S)
0.000E+00
0.000E+00

SPEC VoL
(M*%3/KG)
2.178e-03
2.178E-03
1.678E-03
1.674E-03
2.178€-03

SPEC VOL
(M%*3/KG)
7.250E-03
1.817e-02
2.913e-02
5.139E-02
7.222€-02
1.912e-01
4.627E-01
9.064E-01
1.006E-02
1.007€-03
1.036E-03
1.014E-03
1.015E-03
1.035E-03
1.076E-03
1.153e-03
1.142€-03
1.217e-03
1.312e-03
1.312e-03

SPEC VOL

(Mx*3/KG)
2.913e-02
1.424€-03
1.424€E-03

SPEC VOL

(M**3/KG)
5.139€E-02
1.271E-03
1.271€-03

SPEC VOL
(M*%3/KG)
1.912€e-01
1.912e-01

SPEC VOL

(M*%3/KG)
4.627€-01
1.087E-03
1.087e-03

SPEC VOL

(M*x3/KG)
9.064E-01
1.039E-03
1.039-03

SPEC VOL

(M*x3/KG)
1.006E-02
1.006E-02

ENERGY
(H)

1.418€+08
1.044E+08
1.232E+08
1.232E+08
1.418E+08

ENERGY
(H)

3.743€+07
5.070E+07
4.361E+07
3.732E+07
4.279E+07
3.397€+07
2.979€+07
2.567E+07
2.236E+07
1.535E+06
3.068E+06
3.091E+06
3.191E+06
5.095E+06
7.790E+06
1.263E+07
1.295E+07
1.595E+07
1.873E+07
1.873E+07

ENERGY
(H)
4 .846E+06
2.063E+06
2.063E+06

ENERGY
(H)
4.146E+06
3.212E+06
3.212E+06

ENERGY
(W)
4.843E+06
4.843E+06

ENERGY
(H)
1.568E+06
2.086E+06
2.086E+06

ENERGY
(W)
1.351E+06
1.533E+06
1.533E+06

ENERGY
(W)
0.000E+00
0.000E+00

QUALITY

2.0E-01
0.0E+00
=1.1€-01
-1.4E-01
2.0E-01

QUALITY

1.0E+00
2.1E+00
1.4E+00
1.2€+00
1.4E+00
1.2E+00

QUALITY
1.4E+00

0.0E+00
0.0E+00

QUALITY
1.2E+00

0.0E+00
0.0E+00

QUALITY

1.2E+00
1.2E+00

QUALITY
1.1E+00

0.0E+00
0.0E+00

QUALITY
1.0E+00

0.0E+00
0.0E+00

QUALITY

9.0E-01
9.0E-01

FLOW: AIR_1
HODEL

IN_AIR
CP_AIR
HX_AIR
cB_1

FLOW: GAS_1
MODEL

cB_1
HX_BOIL
HX_SH
HX_RH
HX_AIR
HX_ECON
DRY_1
sK_1

FLOW: AIR_1

IN_AIR
CP_AIR
HX_AIR
c8_1

FLOW: GAS_1

c8_1
HX_BOIL

HX_SH
HX_RH
HX_AIR
HX_ECON
DRY_1
sK_1

PRES.
(ATH)
000E+00
150E+00
.138E+00
. 138E+00

B

PRES.

(ATM)

. 138E+00
.127€+00
116E+00
105E+00
094E+00
083E+00
083E+00
000E+00

ARy e e

0.78000
0.78000
0.78000
0.78000

EEE T

0.01833
.00126

C02= 0.15489

TEMP.
(K)
2.981E+02
3.119E+02
5.000E+02
5.000E+02

TEMP.
(K)
2.332E403
1.665E+03
1.023E+03
7.344E+02
5.845E+02
5.788E+02
7.303E+02
2.982E+02

120

VELOCITY
(M/S
0.000E+00
0.000E+00
0.000E+00
0.000E+00

VELOCITY

cococcoooe
o
=
o
m
+
=
=3

000E+00

ENTH.

(J/7KG)
-9.910E+00
1.389E+04
2.059E+05
2.059E+05

ENTH.
(J/KG)
-2.261E+405
=1.431E+06
-2.290E+06
-2.644E+06
-2.818E+06
-2.825E+06
-2.883E+06
-3.373E+06

COMPOSITION OUTPUT BY FLOW

02 = 0.22000
02 = 0.22000
02 = 0.22000
02 = 0.22000

C02= 0.14056
OH = 0.00581
€02= 0.16091
02 = 0.01673
H20= 0.11879
H20= 0.11879
H20= 0.11879
H20= 0.11879
H20= 0.15227
H20= 0.15227

8

MASS
(KG/S)
1.400€E+01
1.400E+01
1.400E+01
1.400E+01

MASS
(KG/S)
1.545€+01
1.545€+01
1.545€401
1.545€+01
1.545€E+01
1.545E+01
1.583€+01
1.583E+01

SPEC _VOL
(M#®3/KG)
8.468€-01
7.704€-01
1.247€+00
1.247E+00

SPEC VoL
(M%3/KG)
5.772E+00
4.109E+00
2.549E+00
1.849E+00
1.486E+00
1.487E+00
1.904E+00
8.417€-01

H20= 0.11133 NO =

ENERGY
(W)

-1.387E+02
1.945E+05
2.883E+06
2.883E+06

ENERGY
(H)

-3.494E+06
-2.212E407
-3.539€+07
~4.086E+07
-4.355e407
-4.365€407
-4.562£+407
-5.338€+07

0.00542 N2
0.70170 o0

H20= 0.11866 NO = 0.00072 N2 =

N2 = 0.70213 02 = 0.01709 S02= 0.00098
02 = 0.01709 S02= 0.000

02 = 0.01709 S02= 0.00098

02 = 0.01709 S02= 0.00098

02 = 0.01644 S02= 0.00095

02 = 0.01644 S02= 0.00095

QUALITY

1.0€+00
1.0€E+00
1.0E+00
1.0E+00

QUALITY

1.0E+00
1.0E+00
1.0€+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00

0.69019
0.00001

POHER SUMMARY

MCDEL

IN_H20
ST_HP1
ST_HP2

CP_AI
INF_COAL
ce_1
SK_1

YST_1
NET

AUXILIARY
EFFICIENCY 3,

o

SUBSYSTEM: A

]
&
D
N
(el
P COPOOOOOOOODOCOOO

INPUT
(k)

.388E+03
.000E+00
.000E+00
.CUOE+00
.0COE+00
.COCE+00
.00CE+00
.00CE+00
.000E+00
.0C0E+00
.0CCE+00
.000E+00
000E+00
149E+07
C00E+00
.000E+00

. 149E+07
.602E+07

.000E+00
.862E-01

121

PRCDUCED CONSUMED

(H)

.000E+00
. 185E+06
098E+06
.878E+06
547E+06
.658E+06
.229E+06
.000E+00
.000E+00
.000E+00
.000E+00
.0COE+00
.000E+00
.00CE+00
.000E+00
.000E+00

OO0 OOCOUWNNULNNS

-

.663E+07

CONVERGENCE OF THE INDEPENDENT VARIABLES,
POSSIELY VERY CLOSE TO THE SOLUTION

O3JECTIVE: 3.42429E+02

VARIABLES
T - 1.86251E407
2 1.81318E+02
3 1.26777e-0)
CONSTRAINTS
1 -1.85049€+01
2 1.87502e-10
3 6.4744%3E-10

HX_BOIL.
FUNP_BFP
ST_IP.SR

IN_H20.D
IN_H20.D
DEAR_1.P,

HEAT
.EXIT_PRES

H=0.0
P=0.0
ARM. Ql

UAL=0.0

N OO ONUNOODOOOOOO

(R)

000E+00
000E+00
000E+00
000E+00
000E+00
000E+00
00CE+00
00CE+00

.349E+04
.220E+05
. 132E+04
.000E+00
.946E+05
.00CE+00
.000E+00
.000E+00

- 114E+05

N NoooooooNooOoOoOOoOo

LOSS
(H)

.000E+00
.000E+00
.000E+00
.C00E+00
.000E+00
.000E+00
.C00E+00
S2E+07
.000E+00
.000E+00
.00CE+00
000E+00
0CCE+00
000E+00
000E+00
.760E+06

.858E+07

123

APPENDIX E: OPEN-CYCLE
MAGNETOHYDRODYNAMIC POWER PLANT

HIED- UMD &
THAIY RIW0S DEER YD

3

125

PROCESS GP_1:IN

PROCESS
GAS_02-> IN_02
AIR_1-> IN_AIR MX_02 <-GAS_02 CP_AIR HX_AIR:C
FUSL_1-> INF_COAL DRY_1 CB_1 <-AIR_1 ->GAS_1
6AS_1-> NZ_1 MG_1:H DF_1

SYSREG A

PROCESS
LIQ_1-> IN_H20 SD_1 ->STM_1
STH_1-> HN_SH:C ST_HP1 ->STM_HP1
ST_UP2 ->STH_HP2
HXPH:C ST_IP ->STH_IP
ST_LP1 ->STH_LP1
ST_LP2 ->STM_LP2 ST_LP3 ->STM_DUM
2 el
STM_HP1-> FH_HP1:H <-STM_DUM
STH_HP2-> FH_HP2:H <-STM_HP1
STH_LP1-> FH_LP1:H <-STM_HP2
STM_LP2-> FH_LP2:H <-STH_LP1
STM_1-> MX_SC <-STH_LP2
PUTIP_SC HX_ECON:C FH_LP2:C FH_LP1:C
DEAR_1 <-STH_IP
FUYP_FH FH_[IP2:C FH_HP1:C
LIQ_1-> MX_FH <-STH_1
PUNP_BFP NG_1:C HX_BOIL:C IN_H20:CYCL

1

VARY HX_BOIL.HEZAT = * 1E1 25E6

CoHs 20.DH = 0.

VARY F XIT_PRES = = 100 200
coNs = 0.0

_H2
VARY ST_IP.SR = % 0.01 0.20
CONS DEAR_1.PARM.QUAL = 0.0

SYSEND A
PROCESS

GAS_1-> HX_BOIL:H HX_SH:H HX_RH:H
HX_AIR:H HX_ECON:H DRY_1:H SK_1

RULL-> SYST_1 *_»:0UT
DATA
IN_02.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=2.0; »
.X02=1.0;

IN_AIR.PARM .ID='GAS'; .T=298.15; .P=1.0; .M=8.0;
XH2=0.78; .X02=0.22;

IN_H20.PARM .ID='H20'; .T=0.0; .P=180.0; .M=75.0;
.0=0.20;

INF_COAL.PARM .MASS=2.5; .C=0.5213; .H=0.060; .0=0.3152;
.N=0.0079; .S=0.0085; .H20=0.227;
.ASH=0.0871; .HHV=20.743E6;

SD_1.PARM .QUAL=0.20;

CPCAIR.PARM .EXIT_PRES=6.00; .EFFICIENCY=0.88;

CB_1.PARM .ASH_DET=0.0; .K_FRAC=0.01;

NZ_1.PARM .EFFICIENCY=0.90; .EXIT_VEL=750;

MG_1.PARM .B_FIELD=6.0; .DELTA_LENGTH=1.0; .EXIT_PRES=0.85;
.FRICTION_COEF=3E-3; .INVERTER_EFF=0.97; .LOAD_FACTOR=0.7;
.STANTON_N0=2.5E-3; .WALL_TEMP=1800.0; .PRINT=0;

DF_1.PARM .EXIT_VEL=0.0; .PRES_RECOVERY_COEF=0.50;

DRY_1.PARM .H20_DET=0.05;

HX_EOIL.PARM .HEAT=12E6;

HX_SH.PARM .T_SET(2)=811.;

HX_PH.PARM .T_SET(2)=811.;

HX_AIR.PARM .T_SET(2)=800.;

HX_ECON.PARM .HEAT=1E5;

ST_HP1.PARM .EXIT_FRES=100.; .EFFICIENCY=0.84; .SR=0.10;

ST_HP2.PARM .EXIT_PRES=50.3 .EFFICIENCY=0.84: .SR=0.10;

ST_IP.PARM .EXIT_PRES=15.; .EFFICIENCY=0.86: .SR=0.07;

ST_LP1.PARM .EXIT_PRES=5.; .EFFICIENCY=0.87: .SR=0.05:

ST_LP2.PLRM .EXIT_PRES=1.; .EFFICIENCY=0.87; .SR=0.05:

http://DEAR_1.PARM.0UAL

126

ST_LP3.PARM .EXIT_FRES=0.0665 .EFFICIENCY=0.87; .SR=0.0;

(JEXIT_FRES=0.066;

(EXIT_FRES=15.0; .EFFICIENCY=0.90;

.EXIT_FRES=180.0; .EFFICIENCY=0.90;

M. =190.0; .EFFICIENCY=0.90;
.PCLER_HEAD_PTR=FOHER_HEAD_PTR;

_FLCN_READ_PTR=FLON_HEAD_PTR;

LOOP: A N= 1 F= 3.7540E+07
X= 1.2000E+07 1.9000€+02 7.0000E-02
C= -6.1270E+03 8.1000E+00 -6.3133€-02

LOOP: A
S= 4.5277E+05 9.9000E-01 1.1525€E+00
tJ= 0.00CC0E+00

LCOP: A N= 5 F= 3.4243E+02
X= 1.0713E+07 1.8132E+02 1.2478E-01
C= -1.8505E+01 1.8750E-10 6.4794E-10
SCALE TERMINATION, ACTUAL= 1.67041E-09 IN LOOP: A

IN_02

ID=GAS

TEMP = 2.98150E+02
FRES 1.00000E+CD
VB 0.00000z+00
ENTH = -1.17254E+01
HASS = 2.00000E+00

IN_AIR

ID=GAS

TEMP = 2.98150E+02
FFES = 1.000C0E+00
VEL 0.00000E+CQ
ENTH = -9.91020E+00
HASS &.0000CE+00

CP_AIR

FODE = DESIGN

EXIT PRES = 6.00000E+00
EFFICIENCY = 8.80000E-01
MiSS FACTOR = 2.86271E-02

M FACTCR = 1.00000E+00
FRESSURE RATIO = 6.00000E+00

HX_AIR

MODE = DESIGN

TYFE = COUNTER

DESIGH MASS FLOW RATES = 11.87 10.00 KG/S
INLET TEHPERATURES = 975.06 519.76 K

AVERAGE TEMPERATURES = 877.31 659.88 K

DESIGN THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/HW
OVERALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K
LC5 MEAN TEINMP DIFFERENCE = 2.14647E+02 K

HEAT TRANSFERRED = 2.97324E+06 W

HEAT TRANSFER SURFACE AREA = 1.38518E+04 SQ-M
HEAT FLUX = 2.16647E+02H/SQ-M

SURFACE TEMPERATURES = 760.41 760.41 K

INF_COAL
FUEL HHV= 2.07430E+07
FUEL MASS= 2.50000E+00

DRY_1

c8_1

NZ_1

MG_1

FUEL HEIGHT FRACTICH
CAREON HYDROGEN OXYGEN
0.521300 0.060000 0.315200

FUEL HHV= 2.5%927E+07

FUZL MASS= 2.03421E+00
H20_DET= 5.00C00€E-02

H2J RENDVED= 4.65789E-01
HEAT_REQUIRED= 1.14733E+06

FUEL WEIGHT FRACTIOHS
CARSON HYDROGEN OXYGEN
0.640666 0.073739 0.387374%

FUEL MASS BURMED = 1.81646E+00
FUEL HHV = 2.85487E+07

127

NITROGEN SULFUR
0.007900 0.008500

NITROGEN SULFUR
0.009709 0.010446

FUEL HEAT OF FCRM AS BURNED = -4.38836E+06

1ZAT LOSS FRACTION = 0.C0000E+00
STOICHICHETRY = 1.01379E+00

ARZCH EURHOUT = 1.0000CE+00

ASH MASS REMOVED = 2.17750E-01

ASH MASS IN FUEL = 0.00030E+00
WATER MASS IN FUEL = 1.01711E-01
SLURRY COMCENTRATION = 9.44006E-01
POTASSIUN MASS = 5.76982E-02

SEED FRACTION = 1.00000E-02

FUEL ELEMENT FRACTICHS (AS BURNED)
AREO! CARBON HYDRCGEN
0.000000 0.717467 0.083844

OXIDIZER ELEMENT FRACTIONS
ANGON ARBON HYDROGEN
0.000000 0.000000 0.000000

GAS ELEMENT FRﬁCTIONS
ARGOM
0.000000 0

HYDRCGEN
9755 0.013591

EFFICIENCY = 9.00000E-01
EXIT VELOCITY = 7.50000E+02

STANTCN HO. = 2.50000E-03

FRICTICN COEFFICIENT = 3.00000E-03
EXIT PRESSUZE = &.50000E-01

HALL TEMPERATURE = 1.80000E+03
LCAD FACTOR = 7.00000E-01

FARADAY FIELD = 3.15000E+03
FARADAY CURRENT = 7.16795E+03

HALL FIELD = 4.53359E+03

POTASSIUM NITROGEN
0.000000 0.010873

POTASSIUM NITROGEN
0.000000 0.605062

POTASSIUM NITROGEN
0.004859 0.511225

MAGHNETIC FIELD INTEMSITY = 6.00000E+00

PERCENTAGE HEAT LOSS = 8.27526E+01

PERCENTAGE PRESSURE LOSS = 6.92281E+00
MAXIMUM HALL PARAMETER = 7.49928E+00

AVERAGE CCHDUCTIVITY = 5.30959E+00
INLET MACH NO. = 7.96541E-01
CUTLET MACH NO. = 8.77318E-01
PCUER DENSITY = 1.25017E+07

FLOW RATIO (L/D) = 1.94868E+01
INLET AREA = 3.06991E-02

OUTLET AREA = 1.45865E-01

CHANMEL LENGTH = 7.00000E+00

CHLORINE HWATER
0.000000 0.227000

CHLORINE HWATER
0.000000 0.05C000

OXYGEN SULFUR
0.483539 0.011699

OXYGEN SULFUR
0.394938 0.000000

OXYGEN SULFUR
0.406573 0.001790

ASH
0.087100

ASH
0.107044%

CHLORINE
0.000000

CHLORINE
0.000000

CHLORINE
0.000000

128

PRESSURE RECOVERY COEFFICIENT = 5.00000E-01
EXIT VELOCITY = 0.C0000E+00

IN_K20

ID=H20

TEMP = 6.31148E+02
FRES = 1.80000E+02
VEL = 0.00000£+00
ENTH = 1.89132E+05
1SS = 7.50CC0E+01

sD_1
QUALITY = 2.00000E-01

HX_SH
MODE = DESIGN
TYPE = CCUNTER
DESIGN MASS FLOH RATES = 11.87 15.00 KG/S
TNLET TER 2015.08 631.15 K
AVERAGE T ATURES = 1665.14¢ 721.07 K
DESIC!! THECMAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/H
OVEPALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K
LO5 MEAN TEMP DIFFEREMCE = 9.1968SE+02 K

HEAT TRANSFERRED = 1.326S0E+07 W

HEAT TRANSFER SURFACE AREA = 1.44277E+04 SQ-M
HEAT FLUX = 9.196C%E+02H/SQ-M

SURFACE TEMPERATURES = 1095.39 1095.39 K

ST_HP1

MODE = DESIGN

TURSIME EFFICIENCY = 8.40000E-01
JICAL EFFICIENCY = 9.75000E-01
FC{ER FRODUCED = 2.18482E+06

FLOW FACTOR = 2.35550E-05

DESIGN MASS FLOW RATE = 1.50000E+01
SPLIT RATIO = 1.0C000E-01

VCL FLOW RATE = 6.35901E-01

EXHAUST LOSS = 0.00000£+00

ST_HF2

MODE = DESIGN
TUTBINE EFFICIENCY = 8.40000E-01
MECHANICAL EFFICIENCY = 9.75000E-01

POWER PRODUCED = 2.05772E+06
FLOH FACTOR = 3.57563E-05
DESIGHN MASS FLOW RATE = 1.35000E+01

SPLIT PATIO = 1.00000E-01
VOL FLOH RATE = 6.93773e-01
EXHAUST LOSS = 0.000Q0E+00

HX_RH
MODE = DESIGN
TYPE = COUNTER
DESIGN MASS FLOW RATES = 11.87 12.15 K6/S

INLET TEMFERATURES = 1315.19 624.86 K

AVERAGE TEMPERATURES = 1145.12 717.93 K

DESIGN THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/W
OVERALL HEAT TRANSFER COEF = 1.00000E+00 H/SQ-M K

LOG MEAN TEMP DIFFERENCE = 4.22530E+02 K

HEAT TRANSFERRED = 5.47339E+06 W

HEAT TRANSFER SURFACE AREA = 1.29551E+04 SQ-M

HEAT FLUX = 4.22530E+02KH/SQ-M

SURFACE TEMPERATURES = 892.66 892.66 K

L29

ST_IP
MODE = DESIGN
SINE EFFICIENCY = 8.60C00E-01
!AMICAL EFFICIENCY = 9.75000E-01
R PPCOUCED = 3.87820E+05
FLOS FACTOR = 6.89866E-05
DESIGH MASS FLOW RATE = 1.21500E+01
SPLIT RATIO = 1.24777E-01
\VOL FLCH RATE = 2.32236E+00
EXHAUST LOSS = 0.0000CE+00
ST_LP1
= DESIGN
NS EFFICIENCY = 8.70000E-01
ANICAL EFFICIENCY = 9.75000E-01
2 PRODUCED = 2.54706E+06
FLC: FACTOR = 1.77688£-0%
DESICH 1SS FLOW RATE = 1.06340E+01
SFLIT RATIO = 5.00000E-02
VOL FLOW PATE = 4.51983E+00
EXHAUST LOSS = 0.00000E+00
ST_LP2
MODE = DESIGN
TUNDINE SFFICIENCY = 8.70000E-01
MECHANICAL EFFICIENCY = 9.75000E-01
FOUER FACDUCED = 2.69830E+06
FLO' FACTCR = 4.53540E-04
DESIGN M2SS FLOW RATE = 1.01023E+01
SFLIT RATIO = 5.00000E-02
VOL FLOW RATE = 9.15542E+00
EXHAUST LCSS = 0.C0000E+00
ST_LP3
MODE = DESIGN
TUDBINE EFFICIENCY = 8.70000E-01
MECHANICAL EFFICIENCY = 9.75000E-01
PCWHZR FRCOUCED = 3.22887E+06
FLC!! FACTCR = 1.82963E-03
DESIGH MASS FLOW RATE = 9.59715E+00
SELIT RATIO = 0.00000E+00
VOL FLOH RATE = 9.65782E-02
EXHAUST LOSS = 0.00000E+00
5C1
EXIT PRESSURE = 6.60000E-02
FH_HP1

HEAT= 2.78348E+06

SUZCO0L= 5.55000E+00

AREA= 1.941822+01

TTD= 2.76867E+01

DCTD= 6.05232E+01

KDP= 1.00000E-02

CCP = 3.00000E-03 3.00000E-03 3.00000E-03
AREAS= 1.43913E+01 5.02755E+00 4.18452E-01
HEATS= 6.08551E+405 2.12485E+06 5.00694E+04
US = 4.32182E+02 7.17251E+03 1.90172E+03
LMTDS= 9.7843CE+01 5.89255E+01 6.25126E+01
HTEHMP= 7.195632E+402 6.01506E402 5,.84362E+02
CTEMP= 5.56675E+02 5.48577E+02 5.19003E+02

5.78812E+02
5.18284E+02

130

.00000E-03
.67796E-01
.87830E+04
.97282E+03
.S8039E+01
.37253E+02
.75245E+02

SPUONMaNOW

.00000€E-03
senq3pE=01
08975E+04%
.67761E+03
.84916E401
.25117E+02
64540E+02

WP 0000w

00000E-03
41857E+00
08538E+04
60700E+03
98555E+01
.7286%E+02
31007€+02

HHHD2O

5.31703E+02
4.74049E+02

4.19567E+02
3.63112E+02

3.67314E+02
3.29393E+02

13.48 KG/S

61 K

FH_HP2

HEAT= 2.99649E+06

SU:COOL= 5.55000E+00

AREA= 2.3%4280E+01

TTD= 1.8%6%0E+01

BCTD= 5.76522E+01

HCP= 1.00000£-02

COF = 3.0CC00E-03 3.00000E-03

AREAS= 1.49895E+01 8.43851E+00

HEATS= 2.95660E+05 2.61804E+06

US = 3.03532E+02 6.37222E+03

LHTDS= 6.52512E+01 4.86421E+01

HTEMP= 6.233882+02 5.51321E+02

CTEMP= 5.13284E+02 5.13%70E+02
FH LB

HEAT= 2.69449E+06

SuUzcooL= 5.55000E+00

AREA= 2.233460E+01

TTD= 1.48030E+01

LCTD= 5.64551E+01

HOP= 1.00000E-02

CoP = 3.00000E-03 3.00000E-03

AREAS= 9.51650E+00 1.33195E+01

HEATS= 8.50713E+04 2.52852E+06

US = 1.6045%E+02 ¢4.13152E+03

LHTDS= 6.36461E+01 6 .55436E+01

HTEMP= 5.17469E+02 ¢.42722E+02

CTEMP= 4.10309E+02 4.08833E+02
FH_LP2

HEAT= 1.90365E+06

SU2CO0L= 5.55000E+00

AREA= 2.33097E+01

Tl 9.75205E+00

DCTD= 3.75210£+01

KDP= 1.0CCC0E-02

cpP = 3.0000CE-03 3.00000E-03

ANEAS= 0.000C02+00 2.32097E+01

HEATS= 0.000C0E+00 1.831282E+06

US = 3.40000E+02 3.45484E+03

LHMTDS= 0.00000E+00 2.20382E+01

HTEMP= 3.72256E+02 3.72864E+02

CTEHP= 3.63112E+02 3.63112E+02
PUMP_SC

EXIT PRESSURE = 1.50000E+01

EFFICIENCY = 9.00000E-01
HX_ECON

MODE = DESIGN

TYPE = CCUNTER

PESIGN MASS FLOW RATES = 11.87

INLET TEMFERATURES = 779.86 = 327,

AVERAGE TEMPERATURES = 776.18 3

DEAR_1

DESIGN THERMAL RESISTIVITIES =
OVERALL HEAT TRANSFER COEF = 1.00000E+00 H/SQ-M K
LOG MEAN TENP DIFFERENCE = 6.4767

HEAT TR

HZAT TPANSFER SURFACE AREA =
%.47676E+02H/SQ-M
SURFACE TEMPERATURES =

HEAT FL

QUAL=

ANSFERRED =
Ux =

6.4744E-10

1.00000E+05 W

331.89 3

28.50 K
1.0000E+00

6E+02 K

2.23376E+02 SQ-M

31.89 K

0.0000E+00

0.0000E+00 SQ-M K/W

PUMP_FH

EXIT PRESSURE = 1.80C00E+02
EFFICIENCY = 9.00000E-01

PUMP_BFP

EXIT PRESSURE = 1.81818E+02
EFFICIENCY = 9.000C0E-01

HX_EOIL

SK_1

TYPE =

PESIGN

DESICN
COUNTER
MASS FLOW RATES = 11.87 75.00 KG/S

INLET TEMFERATURES = 2342.85 631.98 K

AVE
C
0

RAGE

TEMFERATURES = 2178.97 631.56 K

LCG MEAN TEMP DIFFERENCE = 1.54157E+03 K
HEAT TRANSFERRED = 1.07128E+07 W

HEAT TP#

ER SURFACE AREA = 6.94930E+03 SQ-M

HEAT FLUX = 1.5%157E+03H4/SQ-4
SURFACE TEMPERATURES = 801.28 801.28 K

ENERGY

REJECTED = 9.52601E+06 W

THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00

0.000CE+00 SQ-M K/W
ALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K

FLOW: GAS_02
MODEL

IN_02
Hx_02

FLOW: AIR_1
MODEL

IN_AIR
Hx_02
CP_AIR
HX_AIR
cB_1

FLOW: GAS_1
HODEL

cB_1
NZ_1
¥6_1
DF_1
HX_BOIL
HX_SH
HX_RH
HX_AIR
HX_ECON
DRY_1
SK_1

FLOW: LIQ_1

MODEL

IN_H20
S_1

HX_FH
PUTP_BFP
MG_1
HX_BOIL

FLOW: STM_1
MODEL
s0_1
HX_SH
ST_HP1

ST_HP2
HX_RH

»
=
—
B

wn
— —
—r
Rl
N

7
o

PUMP_FH
FH_HP2
FH_HP1
HX_FH

FLOW: STH_HP1
MODEL
ST_HP1
FH_HP1
FH_HP2

FLOW: STH_HP2
HMODEL
ST_HP2

FH_HP2
FH_LP1

PRES.
(ATH)
1.00CE+00
1.000E+00

PRES.
(ATH)
1.000E+00
1.000E+00
6.000E+00
5.940E+00
5.940E+00

PRES.
(ATH)
5.940E+00
4.029E+00
6.524E-01
8.292E-01
8.209€E-01
8.127e-01
8.046E-01
7.966E-01
7.886E-01
7.886E-01
1.000E+00

PRES.
(ATM)
1.800E+02
1.800E+02
1.768E+02
1.818E+02
1.818E+02
1.800E+02

PRES.
(ATM)
1.800E+02
1.782€+02
1.000E+02
5.000E+01
4.950€E+01
1.500E+01
5.000E+00
1.000E+00
6.600E-02
6.600E-02
6.600E-02
1.500E+01
1.485E+01
1.476E+01
1.463E+01
1.463E+01
1.800E+02
1.784E+02
1.768E+02
1.768E+02

PRES.
(ATH)
1.000E+02
9.900E+01
9.900E+01

PRES.
(ATH)
5.000E+01
4.950E+01
4.950E+01

TEMP.
(K)
2.981E+02
.981E+02

~n

TEMP.
(K)
981E+02
981E+02
198E+02
000E+02
000E+02

00 00 LN NN

TEMP.
(K)
826E+03
735403
256E+03
343E403
015403
3156403
751402
796E+02
728E+02
330E+02
982E+02

MNONNO=NNNNN

TEMP.
(K)
311E+02
311E+02
212402
217E+02
320E+02
311E+02

rrrrrn

TEMP.
(K)
311E+02
110E+02
202E+02
249E+02
110E+02
450E+02
176E+02
731E+02
113E+02
3.113e+02

[PTCE N T Y

3.276E+02
3.294E402
3.631E402
4.103E+02
4.709E+02
4.740E+02
5.183E+02
5.567E+02
5.567€+02

TEMP.
(K)
7.202E+02
5.788E+02
5.788E+02

TEMP.
(K)
6.249E+02
5.317€+02
5.317€+02

OUTPUT BY

VELOCITY
(M/S)

0.000E+00

0.000E+00

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

VELOCITY

coococococooNNo
o
=S
=
m
+
o
=)

000E+00

VELOCITY
(M/S)

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)
0.000E+00

cCoCOO00O0O0 0000000
o
=
=
m
+
o
=3

.000E+00

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000E+00

132

FLOW

ENTH.
(J/KG)
=1.173+01
=1.173e+01

ENTH.

(J/7KG)
-9.910E+00
=1.027€+01
2.230E+05
5.204E+05
5.204E+05

ENTH.
(J/KG)
-2.331E+05
-5.143E+05
-2.011E+06
=1.730E+06
-2.632E+06
-3.749E+06
-4.210E+06
-64.461E+06
-4.469E+06
-4.562E+06
-5.334E+06

ENTH.

(J/KG)
1.891E+06
1.740E+06
1.642E+06
1.643E+06
1.748E+06
1.891E+06

ENTH.
(J/KG)
2.495E+06
3.380E+06
3.231E+06
3.071E+06
3.522€+06
3.194E+06
2.949E+06
2.675E+06
2.330E+06
1.599E+05
2.275E+05
2.293E+05
2.367E+05
3.779E+05
5.777E+05
8.422E+05
8.636E+05
1.063E+06
1.249E+06
1.249E+06

ENTH.

(J/KG)
3.231E+06
1.375E+06
1.375E+06

ENTH.
(J/KG)
3.071E+06
1.127E+06
1.127E+06

MASS
(KG/S)
2.000E+00
2.000€+00

MASS
(KG/S)
8.000E+00
1.000€+01
1.000E+01
1.000E+01
1.000E+01

MASS

(KG/S)

187€+01
187E+01
187E+01
187E+01
187€+01
187€+01
187€+01
187€+01
187E+01
234E+01
234E+01

el i o R N

MASS
(KG/S)
7.500€E+01
6.000E+01
7.500€E+01
7.500€E+01
7.500E+01
7.500€E+01

MASS
(KG/S)
1.500E+01
1.500E+01
1.350E+01
1.215€+01
1.215E+01
1.063E+01
1.010E+01
9.597E+00
9.597E+00
9.597E+00
1.348E+01
1.348E+01
1.348E+01
1.348E+01
1.348E+01
1.500E+01
1.500E+01
1.500E+01
1.500E+01
1.500E+01

MASS
(KG/S)
1.500E+00
1.500E+00
1.500E+00

MASS
(KG/S)
1.350E+00
2.850E+00
2.850E+00

SPEC VOL
(M#*%3/KG)
7.646E-01
7.646E-01

SPEC VOL
(M*»3/KG)
8.468E-01
8.304E-01
2.413e-01
3.751E-01
3.751E-01

SPEC VOL
(M**3/KG)
369E+00
939E+00
213E+00
.816E+00
642E+00
354E+00
261E+00
633E+00
637E+00
267E+00
232e-01

PUNNUWLCOND >

SPEC VOL
(M*%3/KG)
2.178€-03
2.178€-03
1.678€-03
1.674E-03
1.869E-03
2.178€E-03

SPEC VOL

(M**3/KG)
7.250E-03
1.817e-02
2.913e-02
5.139€-02
7.222E-02
1.912E-01
4.627E-01
9.064E-01
1.006E-02
1.007€-03
1.036E-03
1.014E-03
1.015E-03
1.0356-03
1.076E-03
1.153€-03
1.142€-03
1.217e-03
1.312€-03
1.312e-03

SPEC VoL

(M**3/KG)
2.913e-02
1.424E-03
1.424E-03

SPEC VOL
(M**3/KG)
5.139€-02
1.271E-03
1.271E-03

=25
.345€+01

-2

=7,
=
.230E+06
.204E+06
.204E+06

[GICTN

-2,
-2.
=25
-2.
=30
4.
-4.
=B
=B
£
-6.

NN A

2R

S NN NN G D DU

ENERGY
(H)
345€+01

ENERGY
(H)

928E+01
027€+02

ENERGY
(H)

768E+06
768E+06
054E+07
054E+07
125E+07
452407
999E+07
297E+07
307€+07
629E+07
582E+07

ENERGY
(H)

.418E+08
.044E+08
.232E+08
.232E+08
-311E+08
.418E+08

ENERGY
(H)

743407
070E+07
361E+07
732e+07
279€+07
397E+07
979€+07
567€+07
236E+07
535E+06
068E+06
091E+06
191E+06
095406
790E+06
263E+07
295E+07
595e+07

.873E+07
.873E+07

ENERGY
(H)

.B46E+06
.063E+06
.063E+06

ENERGY
(H)

. 146E+06
.212E406
.212E406

QUALITY

1.0E+00
1.0E+00

QUALITY

1
1
1
1
1

.0E+00
.0E+00
.0E+00
.0E+00
.0E+00

QUALITY

1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.
1
1
1
1
1

0E+00

.0E+00
.0E+00
.0E+00
.0E+00
.0E+00

QUALITY

@:
0.
=1

0E-01
0E+00
1E-01

=1.9E-01
2.7e-04

2

0E-01

QUALITY

1.
2e
1.
3
1=

0E+00
1E+00
4E+00
2E+00
4E+00

1.2E+00

e

1E+00

QUALITY

3
0.
.0E+00

0

4E+00
0E+00

QUALITY

1

L2E+00

0.0E+00
0.0E+00

FLOW: STM_IP
MODEL

ST_IP
DEAR_1

FLOH: STM_LP1

FLOW: STM_LP2
MODEL
ST_LP2
FH_LP2
HX_SC

FLOW: STH_DUM
HODEL

ST_LP3
FH_HP1

FLOW: GAS_02
IN_02
HX_02

FLOW: AIR_1
IN_AIR
HX_02
CP_AIR
HX_AIR
cB_1

FLOW: GAS_1

cB_1
NZ_1
H6_1
DF_1
HX_BOIL
HX_SH
HX_RH
HX_AIR
HX_ECON

DRY_1
sK_1

S o0, -

00 -

= 0.24940

PRES.
(ATM)

.500E+01
+500€E+01

PRES.
(ATH)

.000E+00
.950E+00
.950E+00

PRES.
(ATM)

.000E+00
.900E-01
.900€-01

PRES.
(ATH)
6.600E-02
.600E-02

o
N
-
o
o
o
XXX XOXTOXOITXOTOXT

222
eoooo ooooooscecse
g

coooe oooo
w

TEMP. VELOCITY
(K) (H/S)
6.450E+02 0.000E+00
.450E+02 0.000E+00
TEMP. VELOCITY
(K) (H/S)
5.176E+02 0.000E+00
4.196E+02 0.000E+00
%.196E+02 0.000E+00
TEMP. VELOCITY
(K) (M/S)
3.731E+02 0.000E+00
3.673e+02 0.000E+00
3.673E+02 0.000E+00
TEMP. VELOCITY
(K) (W/S)
.1136402 0.000E+00
.113E+02 0.000E+00

0.22000
0.36364
0.36364
0.36363
0.36363
0.16230 00612
0.49018 00729
0.17212 00513
0.49470 00598
0.23126 00095
0.51847 00093

ENTH.

(J/KG)
3.194E+06
3.194E+06

ENTH.

(J/KG)
2.949E+06
6.168E+05
6.168E+05

ENTH.

(J/KG)
2.675E+06
3.945E+05
3.945E+05

ENTH.

(J/KG)
2.330E+06
2.330E+06

COMPOSITION OUTPUT BY FLOW

E:

oo ocococococococoooo

MASS
(KG/S)
1.516E+00
1.516E+00

MASS
(KG/S)
5.317e-01
3.382E+00
3.382E+00

MASS
(KG/S)
5.051E-01
3.887E+00
3.887E+00

MASS
(KG/S)
0.000E+00
0.000E+00

01216 H20= 0
102269 02 = 0
01099 H20= 0
01984 02 = 0
00431 H20% 0
00604 02 = 0
00560 H20= 0.
00826 02 = 0.
00129 H20= 0
00167 02 = 0
00005 N2 = 0
0
0
0
0
0

.53116 02 =
.53117 02 =
0.53117 02 =
0.49809 02 =
= 0.49809 02 =

®

o

&

=
XOXOXOROX

SPEC VOL
(M*%3/KG)
1.912€-01
1.912e-01

SPEC VoL
(M**3/KG)
4.627E-01
1.087€-03
1.087e-03

SPEC VoL
(M*%3/KG)
9.064E-01
1.039E-03
1.039€-03

SPEC VOL
(M**3/KG)
1.006E-02
1.006E-02

(=]
[
TR T T R T TR T

=]
~
coooco ocococooooocooo

=]
S 8

a8
=3
)
>o
(=X}
To

[
won

e =N NN - s

oo

00073 KOH
00001 02

ENERGY
(W)

.B43E+06
.B43E+06

ENERGY
(H)

.568E+06
.086E+06
.086E+06

ENERGY
(H)

.351E+06
.533E+06
.533E+06

ENERGY
(H)

.000E+00
.000E+00

00176 KOH=
00179 KOH=
00160 KOH=
00174 KOH=

QUALITY

1.2€+00
1.2E+00

QUALITY
1.1E+00

0.0E+00
0.0E+00

QUALITY
1.0E+00

0.0E+00
0.0E+00

QUALITY

9.0E-01
9.0E-01

0.00162
0.00161
0.00195
0.00178
0.00287
0.00319

134

PCHER SUMMARY

MODEL INPUT PRODUCED CONSUMED LOSS
(H) (H) (H) (H)
IN_02 0.000E+00 0.000E+00 0.000E+00 0.000E+00
IN_AIR 0.C00E+00 0.000E+00 0.000E+00 0.000E+00
CF_AIR 0.000E+00 0.000E+00 2.231E+06 0.000E+00
INF_CCAL 5.135E+07 0.COQ0E+00 0.000£E+00 0.000E+00
CB_1 0.000E+00 0.0COE+00 0.000E+00 0.000E+00
e 0.000E+00 9.561E+06 0.000E+00 0.000E+00
IN_H20 1.320€+03 0.000E+00 0.C00E+00 0.000E+C0
ST_HP1 0.0005+00 2.125E+06 0.000E+CO 0.000E+00
ST_HP2 0.000E+00 2.0%8E+05 0.000E+00 0.000E+00
STLIR 0.000E+C0 3.878E+06 0.000E+00 0.COOE+00
0.0C0E+00 2.547E+06 0.000E+00 0.0COE+00
0.COCE+00 2.693E+06 0.000E+00 0.000E+00
0.000E+00 3.22%E+06 0.000E+00 0.000E+00
0.CC0E+C0 0.000E+00 0.000E+00 2.082E+07
0.00CE+00 0.000E+00 2.349E+0% 0.0C0E+00
0.000E+00 0.000E+00 3.220E+05 0.000E+00
0.000E+00 0.000E+00 7.132E+04 0.000E+00
0.000E+00 0.0CO0E+00 0.000E+00 9.526E+06
5.184E+07 2.620E+07 2.647E+06 3.035E+07
NET 2.355e+07
AUXILIARY 0.000E+00
EFFICIENCY 4.541E-01

SUDSYSTEM: A
CCHVERGENCE OF THE INDEPENDENT VARIABLES,
FOSSIBLY VERY CLOSE TO THE SOLUTION

OBJECTIVE: 3.42431E+02
VARIABLES
1 1.07128E+07 HX_BOIL.HEAT
2 1.81313E+02 PUMP_BFP.EXIT_PRES
S 1287701 IST TIPSR
COlSTRAINTS
1 -1.85049E+01 IN_H20.DH=0.0
2 1.8750CE-10 IN_H20.DP=0.0
3 6.474%3E-10 DEAR_1.PARHM.QUAL=0.0

ﬂi‘ﬁl‘sb’: §
e e
B sty o

137

PROCESS
GP_0:IN
PLI GASFRZ='1'B;
PROCESS
STM_MIX-> IN_MSTH CP_STM
GAS_AN-> IN_GAS CP_GAS HX_1:C_ MX_STM <-STM_MIX HX_A:C
AIR_1-> IN_AIR CP_AIR1 HT_INTER CP_AIR2 HX_C:C
PLI GASFRZ='07B;
PROCESS
GAS_AN-> AIR_1-> SOFC_1
GAS_AN-> MX_BURN <-AIR_1 SP_BURN ->AIR_1
PLI GASFRZ='17B;
PROCESS
AIR_1-> HX_C:H
AS_AN-> HX_A:H MX_AIR <-AIR_1

PROCESS

GAS_AN-> HX_FB:H G6T_1 HX_ST:H SK_1
SYSEEG A

VARY IN_STM.PARM.M = % 1.0 10.0

VARY PUHP_SC.EXIT_PRES = % 140 170

CONS IN_STH.DH=0.0

CCNS IN_STM.DP=0.0

PROCESS

STM_1-> IN_STM HX_1:H ST_1 ->STM_DUM
SC_1 PUMP_SC HX_ST:C HX_FB:C IN_STM:CYCL
SYSEND A
PLI SOFC_1.PONER.PRODUCED = 0.96%SOFC_1.PONER.PRODUCED;
IN_GAS.PCHER.INPUT = IN_GAS.PARM.Mx55.529E6;

PROCESS

NULL-> SYST_1 %_%:0UT

DATA

IN_GAS.PARM .T=298.0; .P=1.0; M=1.0;
_COMP.XCH4=1.000;

IN_STM.PARM .ID='H20'; .T=823.0; .P=150.0;
H=5.05 .COMP.XH20=1.0;

IN_MSTM.PARM .ID='H20'; .T=298.15; .P=1.0;
M=1.60; .COMP.XH20=1.0;

IN_AIR.PARM .T=298.0; .P=1.0; .M=30.0;
“COMP.X02=0.21; .COMP.XN2=0.79;

HX_1.PARM .T_SET(2)=573.0;

HX_A.PARH .T_SET(2)=1073.0;

HX_C.PARM .T_SET(2)=1073.0;

HX_FB.PARM .T_SET(1)=800.0;

HX_ST.PARM .T_SET(1)=400.0;

CP_AIR1.PARM .EXIT_PRES=3.5; .EFFICIENCY=0.85;

CP_AIR2.PARM .EXIT_PRES=12.0; .EFFICIENCY=0.85;

HT_INTER.PARM .T_SET=318.0;

CP_GAS.PARM .EXIT_PRES=13.0; .EFFICIENCY=0.85;

CP_STM.PARM .EXIT_PRES=12.0; .EFFICIENCY=0.85;

SOFC_1.CELL_CURRENT=1.56863E5;

SOFC_1.DELTA_VOLT=0.180;

SOFC. 1.NO_OF_CELLS=230;

SOFC_1.CELL_TENMP=1273.0;

SOFC_1.CELL_VOLTAGE=0;

SP_BURN.PARH.SPLIT_RATI0=0.7;

ST_1.PARM.EXIT_PRES=0.180;

ST_1.PARM.EFFICIENCY=0.82;

SC_1.PARM.EXIT_PRES=0.180;

G6T_1.PARM.EFFICIENCY=0.87;

6T_1.PARM.EXIT_PRES=1.0;

PUNP_SC.PARM .EXIT_PRES=150.0;

SYST_1.PARM .POHER_HEAD_PTR=POHER_HEAD_PTR;
.FLON_HEAD_PTR=FLON_HEAD_PTR;

138

1.67448E-04 IN LOOP: A

EFFICIENCY =
HASS FACTOR =
M FACTCR =

LOOP: A N= 1 F= 2,2759E+10
%= 5.0000E+00 1.5000E+02
C= -1.5085E+05 -2.9850E+00
LOOP: A
S= 6.069%€+05 9.8010E-01
MU= 0.00000E+00
LOOP: A N= § F= 6.1692E+07
X= 4.7520E+00 1.5305E+02
C= 7.8544E+03 4.4125E-10
SCALE TERMINATION, ACTUAL=
IN_MSTM
ID=H2
TENP = 2.98150E+02
PRES = 1.00000E+00
VEL = 0.00000E+00
ENTH = 1.04976E+05
HASS = 1.60000E+00
CP_STH
MODE = DESIGN
EXIT PRES = 1.20000E+01
EFFICIENCY = 8.50000E-01
MASS FACTCR = 1.55180E-04
M FACTOR = 1.00000E+00
PRESSURE RATIO = 1.20000E+01
IN_GAS
10=6AS
TEHP = 2.98000E+02
FRES = 1.00000E+00
VEL = 0.00000E+00
ENTH = -4.66754E+06
MASS = 1.00000E+00
CP_GAS
MCDE = DESIGN
EXIT FRES = 1.30000E+01

8.50000E-01
3.87848E-03
1.00000E+00

PRESSURE RATIO = 1.30000E+01
HX_1

MODE = DESIGN

TYPE = COUNTER

DESIGN MASS FLOW RATES = 4.75

INLET TEMNPERATURES =
AVERAGE TEMPERATURES

DESIGN THERMAL RESISTIVITIES =
OVERALL HEAT TRANSFER COEF =
LOG MEAN TEMP DIFFERENCE =

HEAT TRANSFERRED =

823.00 536.94 K
= 818.43 554.97 K

2.63432E+02 K
1.11323E+05 W

1.0000E+00
1.00000E+00 W/SQ-M K

HEAT TRANSFER SURFACE AREA =
HEAT FLUX = 2.63432E+02H/SQ-M

SURFACE TEMPERATURES =

4.22586E+02 SQ-M

559.57 EB9.57 K

1.00 KG/S

0.0000E+00

0.0000E+00 SQ-M K/W

HX_A

IN_AIR

CP_AIR

HT_INT

CP_AIR

HX_C

139

MODE = DESIGN
TYPE = CCUNTER s
DESIGN M CS FLOW RATES = 9.78 2.60 KG/S

INLET TEMPERATURES = 1637.80 %32.74 K
AVERAGE TEMPERATURES = 1470.80 752.87 K

DESIGN THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00

OVEPALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K
LCS MEAN TEMP DIFFERENCE = 7.06908E+02 K

HEAT TRANSFERRED = 4.5S5804E+06 W

HEAT TRANSFER SURFACE AREA = 6.44786E+03 SQ-M
HEAT FLUX = 7.055C8E+020/59-M

SURFACE TEMPERATURES = 930.89 930.89 K

ID=GAS
TEMP = 2.58000E+02
FRES = 1.0C000E+00

VEL = 0.00000E+00
ENTH = -1.61551E+02
HASS = 3.00000E+01

1

MODE = DESIGN

EXIT PRES = 3.50000E+00
EFFICIENCY = 8.50000E-01
MASS FACTOR = 8.67661E-02

M FACTOR = 1.00000E+00
PRESSURE RATIO = 3.50000E+00

ER
HEAT = -3.95416E+06
2

MCDE = DESIGN

EXIT PRES = 1.20000E+01
EFFICIENCY = 8.50000E-01
MASS FACTOR = 2.56087E-02

M FACTOR = 1.0000CE+00
PRESSURE RATIO = 3.42857E+00

MODE = DESIGN

TYPE = COUNTER

DESIGN MASS FLOW RATES = 22.82 30.00 KG/S
INLET TENPERATURES = 1637.80 473.84 K

AVERAGE TEMPERATURES = 1321.17 773.42 K

DESIGN THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00

CVERALL HEAT TRANSFER COEF = 1.00000E+00 W/SQ-M K
LOG MEAN TEMP DIFFERENCE = 5.47569E+02 K

HEAT TRANSFERRED = 1.97648E+07 W

HEAT TRANSFER SURFACE AREA = 3.60591E+04 SQ-M
HEAT FLUX = 5.47569E+021/5Q-M

SURFACE TEMPERATURES = 1090.23 1090.23 K

0.0000E+00 SQ-M K/H

0.0000E+00 SQ-M K/H

SOFC_1

SP_EUR

HX_FB

GT_1

HX_ST

SK_1

140

CELL TEMFERATURE = 1.27300E+03 K

CELL CURRENT = 1.56863E+05 A
CELL VOLTAGE = 0.67764 V
NO OF CELLS = 230

STACK VOLTAGE = 1.55857E+02 V

OVERALL ISOTHIRMAL HEAT OF REACTION = 6.77208E+07 W
STACK GROSS PCHER = 2.36703E+07 W

NERNST POTENTIAL AT FUEL CELL EXIT = 8.50413e-01 V

FUEL UTILIZATION = 7.49853E-01
XYGEN UTILIZATION = 4.285%55E-01

N

SFLIT RATIO = 7.00000E-01
POAER RERUIRED = 0.0C000E+00

HMODE = DESIGN
TYPE = COUNTER
DESICH 1MASS FLOW RATES = 32.60 4.75 KG/S

INLET TEMPERATURES = 1095.93 471.10 K

AVERAGE TEMPERATURES = 947.96 648.49 K

DESIGH THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/H
CVERALL KHEAT TRAMSFER COEF = 1.0000CE+00 W/SQ-M K

LOG MEAN TEMP DIFFERENCE = 3.31704E+02 K

HEAT TRANSFERRED = 1.23773E+07 W

HEAT T SFER SURFACE AREA = 3.73143E+04 SQ-M

HEAT FLUX = 3.3170%E+02H/SQ-M

SURFACE TEMPERATURES = 7664.22 764.22 K

MODE = DESIGN

EXIT PRESSURE = 1.00000E+00
EFFICIENCY = 8.700C0E-01

MECHANICAL EFFICIENCY = 9.80000E-01
MASS FACTOR = 1.36216E-02

M FACTCR = 1.00000E+00

DESIGH PRESSURE RATIO = 1.16436E+01
PRESSURE RATIO = 1.16435E+01

MODE = DESIGN

TYPE = CCUNTER

DESICN HASS FLCH RATES = 32.60 4.75 KG/S
INLET TEMPERATURES = 6475.57 332.32 K

AVERAGE TEMFERATURES = 437.78 4601.71 K

DESIGN THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00 0.0000E+00 SQ-M K/W
OVERALL HEAT TRANSFER COEF = 1.00000E+00 H/SQ-M K
LOG MEAN TEMP DIFFERENCE = 3.13512E+01 K

HEAT TRANSFERRED = 2.79726E+06 W

HEAT TRANSFER SURFACE AREA = 8.92233E+0%4 SQ-M
HEAT FLUX = 3.13512E+01H/SQ-M

SURFACE TEMPERATURES = 644.22 444.22 K

ENERGY REJECTED = 3.70975E+06 W

IN_STH

ST

141

ID=H20

TEMP = 8.23000E+02
FRES = 1.50000E+02
VEL = 0.00000E+00
ENTH = 3.449609E+05
MASS = 4.75203E+00

MODE = DESIGN

TURCINE EFFICIENCY = 8.20000E-01
HECHANICAL EFFICIENCY = 9.75000E-01
PCIER FRCDUCED = 4.93119E+06

FLOW FACTO2 = 9.00556E-06

DESICN MASS FLOW RATE = 4.75203E+00
SPLIT RATIO = 0.00000E+00

VOL FLOW RATE = 4.59741E-02
EXHAUST LCSS = 0.00000E+C0

EXIT PRESSURE = 1.80000E-01

PUMP_SC

EXIT PRESSURE
EFFICIENCY =

1.53046E+02
.0000CE-01

-1}

FLOW: STM_MIX
MODEL

IN_HSTH
CP_STH
MX_STH

FLOW: GAS_AN
MODEL

IN_GAS
CP_GAS
HX_1
MX_STH
HX_A
SOFC_1
MX_BURN
SP_BURN
HX_A
AIR
HX_FB
6T_1
HX_ST
SK_1

5
(15 e 1)

FLOH: AIR_1
HODEL

IN_AIR
CP_AIR1
HT_INTER
CP_AIR2
HX_C
SOFC_1
HX_BURN
SP_BURN

Tl 1B e

FLOW: STHM_1
MODEL

IN_STH
HX_1
ST_1

&
PUFP_SC
HX_ST
HX_FB

FLOW: STH_OUM
MODEL

ST_1

FLOH: GAS_AN

IN_GAS
CP_GAS
HX_1
HX_STH
HX_A
SOFC_1
HX_BURN
SP_BURN

==
5 %<
>

AIR

ox

=3
-
o

=

<
B

W

=

7]
=

142

OUTPUT BY FLOW

VELOCITY
(M/S)
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/!

000E+00
000E+00

cococococococococooco

o
=
=
m

+

o
=)

VELOCITY

coococoocoooo

=
=
1=
m

+

=3
£=)

000E+00

VELOCITY
(H/S)

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

VELOCITY
(M/S)

0.000E+00

COMPOSITION OUTPUT BY

PRES. TEMP.
(ATH) (K)
1.000E+00 2.981E+02
1.200E401 2.982E+02
1.200E+01 2.982E+02
PRES. TEMP.
(ATH) (K)
1.000E+00 2.980E+02
1.300E+401 5.369E+02
1.287E+01 5.730E+02
1.200E+01 4.327E+02
1.188E+01 1.073E+03
1.183E+01 1.286E+03
1.188E+01 1.638E+03
1.183E+01 1.638E+03
1.176E401 1.304E+03
1.176E+01 1.096E+03
1.164E+01 8.000E+02
1.000E+00 4.756E+02
9.900E-01 4.000E+02
1.000E400 2.982E+02
PRES. TEMP.
(ATH) (K)
1.000E+00 2.980E+02
3.500E400 4.474E+02
3.500E+400 3.180E+02
1.200E+01 4.738E+02
1.188E+01 1.073E+03
1.188E+01 1.286E+03
1.188E+01 1.286E+03
1.188E+01 1.638E+03
1.176E+01 1.005E+03
1.176E+01 1.005E+03
PRES. TEMP.
(ATH) (K)
1.500E+02 8.230E+02
1.485E+402 8.139E+02
1.800E-01 3.312E+02
1.800E-01 3.312E+02
1.530E402 3.323E+02
1.515€+02 4.711E+02
1.500E+02 8.259E+02
PRES. TEMP.
(ATH) (K)
1.800E-01 3.312E+02

1.00000

1.00000

1.00000
0.41240 H20= 0.58760
0.41240 H20= 0.58760
0.06832 €02= 0.15768
0.05233 H20= 0.17915
0.05233 H20= 0.17915
0.05233 H20= 0.17915
0.05233 H20= 0.17915
0.05233 H20= 0.17915
0.05233 H20= 0.17915
2= 0.05233 H20= 0.17915
€02= 0.05233 H20= 0.17915

H2 = 0.15781
NO = 0.00139
NO = 0.00139
NO = 0.00139
NO = 0.00139
NO = 0.00139
NO = 0.00139
NO = 0.00139
NO = 0.00139

ENTH. SS SPEC VOL
(J/KG) (KG/S) (M**3/KG)
1.050E405 1.600E+00 1.003E-03
1.063E405 1.600E+00 1.002E-03
1.063E+405 1.600E+00 1.002E-03
ENTH. MASS SPEC_VOL
(J/KG) (KG/S) (M¥%3/KG)
-4.668E+406 1.000E+00 1.524E+00
-4.046E+406 1.000E+00 2.113E-01
-3.935E+406 1.000E+00 2.277E-01
-9.773E406 2.600E+00 1.720E-01
-8.020E+06 2.600E+00 4.308E-01
-8.9026406 5.591E+400 4.380E-01
-6.191E+05 3.260E+01 4.133e-01
-6.191E+405 9.780E+00 4.133E-01
-1.085E406 9.780E+00 3.323E-01
-1.365E406 3.260E+01 2.794E-01
-1.744E406 3.260E+01 2.060E-01
-2.131E+406 3.260E+01 1.426E+00
-2.2176+06 3.260E+01 1.211E+00
-2.330E406 3.260E+01 8.939E-01
ENTH. MASS SPEC_VOL
(J7KG) (KG/S) (M**3/KG)
-1.616E+02 3.000E+01 8.476E-01
1.519E+05 3.000E+01 3.636E-01
2.007E404 3.000E+01 2.584E-01
1.791E+05 3.000E+01 1.123E-01
8.373E+05 3.000E+01 2.569E-01
1.095E406 2.701E+01 3.111E-01
1.0956+06 2.701E+01 3.111E-01
-6.191E+405 2.282E+01 4.133e-01
-1.484E+406 2.282E+01 2.561E-01
-1.484E+06 2.282E+01 2.561E-01
ENTH. MASS SPEC VOL
(J/KG) (KG/S) (H*%3/K6)
3.446E+06 4.752E+00 2.259E-02
3.423E+06 4.752E400 2.247E-02
2.358E+06 4.752E+00 9.675E-03
2.432E405 4.752E+00 1.016E-03
2.607E+405 4.752E+00 1.010E-03
8.493E+05 4.752E400 1.140E-03
3.454E+06 4.752E+400 2.270E-02
ENTH. MASS SPEC_VOL
(J/KG) (KG/S) (M**3/KG)
2.358E406 0.000E+00 9.675E-03
FLOW
H20= 0.61619
N2 = 0. OH = 0.00016
N2 = 0. OH = 0.00016
N2 = 0. OH = 0.00016
N2 = 0. OH = 0.00016
N2 = 0. OH = 0.00016
N2 = 0. OH = 0.00016
N2 = 0. OH = 0.00016
N2 = 0.68902 OH = 0.00016

ENERGY
(H)
1.680E+05

1.701E+05
1.701E+05

ENERGY
(H)

-4.668E+06
~4.046E+06
-3.935E+06
-2.541E+07
-2.085E407
-4.977€+07
-2.018E+07
-6.055E+06
-1.061E+07
-4.449€+07
-5.686E+07
-6.946E+07
-7.226E407
-7.597€+07

ENERGY
(W)
-4.847E+03
4.556E+06
6.021E+405
5.373E+06
2.512E+07
2.959E+07
2.959E+07
-1.413E+07
-3.387E+07
~3.387E+07

ENERGY
(H)

1.638E+07
1.626E+07
1.121E+07
1.156E+06
1.239E+06
4.036E+06
1.641E+07

ENERGY
(H)

0.000E+00

QUALITY

=1.4€-01
-3.5€-01
-3.5e-01

QUALITY

1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00

QUALITY

1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00

QUALITY

1.9€+00
1.8E+00
9.0e-01
0.0E+00
=1.4E+00
-7.9€-01
1.9€+00

QUALITY

9.0e-01

FLOW: AIR_1

IN_AIR
CP_AIR1
HT_INTER
CP_AIR2
HX_C
SOFC_1
HX_BURN
SP_BURN
HX_C
MX_AIR

MODEL

IN_MSTH
CP_STH
IN_GAS
CP_GAS
INAIR
CP_AIR1
HT_INTER
CP_AIR2
SOFC_1
6T_1
sk_1
INSTH
]
sc_1
PUFP_SC

SYST_1

AUXILIARY
EFFICIENCY

SUBSYSTEM: A

-
~
R

co2=

0.79000

0.05233

0.21000
0.21000
0.21000
0.21000
0.21000
0.86787
0.86787
20= 0.17915
= 0.17915
H20= 0.17915

TR

POHER SUMMARY

INPUT

0.

coouocoococooo

5.

3.
0.
5.

(H)
000E+00

000E+00
549E+07
071E+07

000E+00
534E-01

PRODUCED
(H)

000E+00
000E+00
000E+00
00CE+00
000E+00
.000E+00
000E+00
000E+00
347E+07
235E+07
000E+00
000E+00
931E+06
0.000E+00
0.000E+00

4.075E+07

foocaNOCOOCOOOOS

143

02 = 0.13180

02 = 0.13180

NO = 0.00139 N2 = 0.68902 OH

NO = 0.00139 N2 = 0.68902 OH

NO = 0.00139 N2 = 0.68902 OH
CONSUMED LOSS

(H) (H)
0.000E+00 0.000E+00
2.103E+03 0.000E+00
0.000E+00 0.000E+00
6.215E+05 0.000E+00
0.000E+00 0.000E+00
4.561E+06 0.000E+00
0.000E+00 3.954E+06
4.771E+06 0.000E+00
0.000E+00 0.000E+00
0.000E+00 0.000E+00
0.000E+00 3.710E+06
0.000E+00 0.000E+00
0.000E+00 0.000E+00
0.000E+00 1.005E+07
8.310E404 0.000E+00
1.004E+07 1.772E+07

CONVERGENCE OF THE INDEPENDENT VARIABLES,
POSSIBLY VERY CLOSE TO THE SOLUTION

OBJECTIV
VARIABLE!

1 4.75203E+00
2 1.53046E+02

CONSTRAINTS
3

7.85445E+03
2 4.41247e-10

E: 6.16924E+07
S

IN_STH.PARM.M
PUFP_SC.EXIT_PRES

IN_STH.DH=0.0
IN_STH.DP=0.0

0.00016 02
0.00016 02
0.00016 02

0.0779%
0.07794
0.07794

T

¥

.
_qmmba%

»

145

APPENDIX G: LIQUID-METAL
MAGNETOHYDRODYNAMIC POWER PLANT

ARTIR NG AR
ST RHANYED:

5 4

147

FROCESS GP_1:IN
SYSBES A
FROCESS
"LS_1-> IN_GAS
LIa_1-> IN_LIQ
GAS_1-> LIQ_1-> MMHD_1 TPNZ_1 SEPR 1 -> 3
LIQ_1-> MOIF_1 HT_LIQ MNOZ_1 3 ke
GAS_1-> HX_REG:H HT_COOL CP_GAS HX_REG:C
TRHX_1 <-LIQ_1 -
IN_GAS:CYCL
LIQ_1-> IN_LIQ:CYCL
KULL-> SYST_1
VARY I%4D_1.EXIT_PRES
VARY TH_LIQ.M = * 1.0
VARY TFRZ_1.EXIT_FRES

= % 8 48 CONS MMHD_1.VOID_FRACTION<0.85
450 CONS TPMX_1.VOID_FRACTICN>0.55
ES = % 3 47 COMS TPMX_1.PRES_DIFF_IN=0.0
VARY HT_LIQ.HEAT = * 1E2 5E6 CONS IN_LIQ.DT=0.0 i
VARY CP_GAS.EXIT_PRES= % 40 60 CONS IN_GAS.DP=0.0
VARY HT_CCOL.HEAT = % -1E6 0.0 CONS HT_COOL.FLC.TEMP=310.0
VARY HX_REG.HEAT = % 2E4 4E6
CCHS HX_PEG.FLC.TEMP<SEPR_1.FLC1.TEMP-20.0
MINI -SYST_1.EFFICIENCY
SWITCH ACC=1E-4 DEL=1E-6 MAXIT=100
SYSEHD A
PPOCESS
NULL-> *_*:0UT
DATA
IN_GAS.PARM .ID='JAN-HE'; .T=867; .P=50.0; .v=25.0; .M=1.
IN_LIQ.PARM .ID='LIQ-MA'; .T=867; .P=50.0; .v=25.0; .M=90.
i .PARM .EFFICIENCY=0.80; .EXIT_PRES=24.00;
.PARM = .EFFICIENCY=0.90; .EXIT_PRES=20.0;
_1.PARNM .VELOCITY_HEAD_RATIO0=0.90;
HX_REG.FARH .HEAT=1E5;
HT_COCL.PARM .HEAT=-6.5E5;
HT_LIQ.PARM .HEAT=1.0E6;
CP_GAS.PARN LEFFICIENCY=0.88; .EXIT_PRES=50.0;
POIF_1.PARM .EXIT_VELOCITY=15.0; .EFFICIENCY=0.90;
MH0Z_1.PARM LEXIT_VELOCITY=25.0; .EFFICIENCY=0.90;
TRHX_1.PARM .PRES_DROP=0.0;
SYST_1.PARM .FOIER_HEAD_PTR=POWER_HEAD_PTR;
.FLOW_HEAD_PTR=FLOW_HEAD_PTR;

1

LOOP: A N= 1 NEQ= 4 F= 1.1704E+01
X= 2.4000E+01 9.0000E+01 2.0000E+01
C= 6.320CE+00 8.50056+00 -6.7574E+00

LAGRANGE MULTIPLIERS=
6.2329E+01 -2.0394E-04 7.6832E+01
0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00

DISPLACEMENTS=
1.8296E+00 8.0331E400 2.5871E-01
2.1259E-11 -4.5423E-09 -4.3201E-12

WEIGHT = 1.0000E+12

INITIAL INFEASIBLITY NORM= 2.2742E+05
LOOP: A N= 16 NEQ= & F= -2.8499E-01

X= 2.5830E401 9.8033E401 2.0259E+01

C= 7.1630E-01 6.9133E-01 -7.0920€E-01

L= 4.0652E+02

LAGRANGE HULTIPLIERS=
1.8769E+00 -2.4416E-03 2.8131E+00

0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
DISPLACEMENTS=
1.1472€-01 -6.9584E-01 2.4534E-03
-3.2011E-13 -4.7161E-13
HWEIGHT = 1.0000E+12
INITIAL INFEASIBLITY NORM= 2.0127E+00
LOOP: A N= 24 HNEQ= 4 F= -2.7898E-01
X= 2.5944E+01 9.73376+01 2.0261E+01
C= -3.4122E-03 -4.5584E-03 3.3785E-05
L= 1.3376E-02
LAGRANGE MULTIPLIERS=
6.6887E-03 4.8983E-06 2.5450E-02
0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
DISPLACEMENTS=
-3.6269E-04 4.5462E-03 9.4921E-05

-2.4193E-15 -3.5388E-13
HEIGHT = 1.0000E+12
INITIAL INFEASIBLITY NORM= 3.2660E-05

LOOP: A N= 32 NEQ= & F= -2.7900E-01
X= 2.5944E+01 9.7342E+01 2.0261E+01
C= -1.2959€-07 -2.0712E-07 1.2836E-09
L= 2.2688E-05

IN_GAS

1D=JAN-HE

TEMP = 8.67000E+02

PRES = 5.00000E+01

VEL = 2.50000E+01

ENTH = 6.05463E+06

MASS = 1.00000E+00
IN_LIQ

ID=LIQ-NA

TEMP = 8.67000E+02

PRES = 5.00000E+01

VEL = 2.50000E+01

ENTH = 1.220%5E+05

MASS = 9.73418E+01
HMHD_1

Efficiency = 8.00000E-01

Power = 1.17465E+06

VOID FRAC. = 8.50000E-01

LENGTH = 5.0C000E+00

GPAV ANGLE = 9.00000E+01
TPNZ_1

Efficiency = 9.00000E-01

VOID FRAC = 8.78581E-01
SLIP RATIO= 1.00000E+00
TEMP DIFF= 0.00000E+00
LENGTH = 5.00000E+00
GRAV ANGLE = 9.00000E+01

148

1.0000E+06 5.0000E+01
4.0125E+02 -1.8709€-02

-2.1107E+01 4.5623E+03
0.0000E+00 0.0000E+00

3.6624€405 5.05056-01

FINAL INFEASIBLITY NORM=

1.3662E+06
-7.8331€-02

5.0505E+01
3.3935€-04

3.2006€-01
0.0000E+00

1.4379€+02
0.0000E+00

-8.8265E+04 -3.2746E-10

FINAL INFEASIBLITY NORM=

1.2780€+06 5.0505£+01
-4.8639E-04 -4.1536E-06

2.4192e-03
0.0000E+00

3.5388E-01
0.0000E+00

6.1475E+02 -2.5485E-11

FINAL INFEASIBLITY NORM=

1.2786E+406 5.0505€+01
-2.1673€-08 -9.9880E-11

-6.5000E+05 1.0000E+05
2.3848E-01 -2.5742€402

0.0000E+00 4.1462E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00
~2.6806E+05 1.8223E+06 -6.2328E-11
2.0642€-17

-9.1806E+05 1.9223E+06
1.5890E-01 -7.1593€-01

0.0000E+00 4.7156E-01 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00

-3.7987€+03 -4.5900E+03 -1.8768E-12

1.1761€-23

-9.2186E+05 1.9177E+06
1.9744€-01 2.5115€-04

0.0000E+00 1.7267E-03 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00

4.9848E+00 5.2545E+00 -6.6890E-15

1.2593€-25

-9.2185E+05
1.9743e-01

1.9177€+06
1.0736€-08

0.0000E+00 0.0000E+00
0.0000€+00 0.0000E+00

1.1102€-15 -7.6833E-11

0.0000E+400 0.0000E+00
0.0000E+00 0.0000E+00

2.5258E-15 -2.8131E-12

0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00

=1.1276E-17 -2.5449E-14

SEPR_1

149

VEL HEAD RATIO= $.00000E-01
FRES DROP(1)= 0.00C00E+00
FRES DROP(2)= 0.00000E+00
EFFICIENCY= 8.90843E-01
VAPCR C/0= 0.00000E+00
HEAT REJECTED= 0.00C00E+00
LIQUID C/0= 0.00090E+00
GAS C/0= 0.00000E+00

MDIF_1

Efficiency = 9.00000E-01
LENGTH = 5.000C0E+00
GRAV ANGLE = 9.00000E+01

HT_LIQ

HEAT = 1.27853E+06

HNOZ_1

EFFICIENCY = 9.00000E-01
EXIT VELOCITY= 2.50000E+01
LENGTH = 5.00000E+00

GRAV ANGLE

HX_REG

= 9.C0000E+01

MCDE = DESIGN

TYPE = COUNTER

DESIGN MASS FLOW RATES = 1.00 1.00 KG/s

INLET TEMPERATURES = 856.45 467.40 K

AVERAGE TEMPERATURES = 671.93 651.93 K

DESIGN THERMAL RESISTIVITIES = 1.0000E+00 0.0000E+00
OVERALL HEAT TRANSFER COEF = 1.00000E+00 H/SQ-M K

LOG MEAN TEMP DIFFERENCE = 2.00000E+01 K

HEAT TRANSFERRED = 1.91774E+06 W

HEAT TRANSFER SURFACE AREA = 9.58870E+0% SQ-M

HEAT FLUX =
SURFACE TEMPERATURES = 836.45 836.45 K

HT_COOL

2.00000E+0 1H/SQ-M

HEAT = -9.21854E+05

CP_GAS

TPMX_1

MCDE = DESIGN

EXIT PRES
EFFICIENCY

5.05051E+01
8.80000E-01

MASS FACTOR = 3.54953E-04

M FACTCR =

1.00000E+00

PRESSURE RATIO = 2.51787E+00

void frac.
SLIP RATIO
TE!NP DIFF
PRES DRCP

7.47428E-01

1.00000E+00
0.00000E+00
0.0000CE+00

DP_FRAC = 0.00000E+00

0.0000E+00 SQ-M K/W

150

OUTPUT BY FLOW
FLOW: GAS_1
MODEL PRES. TEMP. VELOCITY ENTH.
(ATH) (K) (H/S) (J/KG)
IN_GAS 5.000E401 8.670E+402 2.500E+01 6.055E+06
HHAD_1 2.594E+01 8.5956402 2.500E+01 6.016E+06
TFNZ_1 2.026E+01 8.564E+02 9.978E+01 5.999E+06
SEPR_1 2.026E+01 8.5656402 9.466E+01 6.000E+06
HX_REG 2.006E+01 4.874E+02 9.456E+01 4.082E+06
HT_COOL 2.006E+01 3.100E+02 9.466E+01 3.160E+06
CP_GAS 5.051E+01 4.674E+02 9.466E+01 3.978E+06
HX_REG 5.000€+01 8.3656402 9.466E+01 5.896E+06
TPHX_1 5.000E+01 8.670E+402 2.500E+01 6.055E+06
FLOW: LIQ_1
MODEL PRES. TEMP. VELOCITY ENTH.
(ATH) (K) (M/S) (J7KG)
IN_LIQ 5.000E+01 8.670E+02 2.500E+01 1.220E+06
HPRD_1 2.594E+01 8.5956402 2.500E+01 1.209E+06
TPNZ_1 2.026E+01 8.564E+02 9.978E+01 1.204E+06
SEPR_1 2.026E+01 8.567E+02 9.466E+01 1.205E+06
MDIF_1 5.178€+01 8.578E+02 1.500E+01 1.209E+06
HT_LIQ 5.178E+01 8.683E+02 1.500E+01 1.222E+06
MNDZ_1 5.000E+01 8.683E+02 2.500E+01 1.222E+06
TPHX_1 5.000E+01 8.670E+402 2.500E+01 1.220E+06
FLOW: GAS_CO
MODEL PRES. TEHP. VELOCITY ENTH.
(ATH) (K) (H/5) (J/KG)
SEPR_1 2.026E+01 8.565E402 9.466E+01 6.000E+06
FLOW: LIG_CO
MODEL PRES. TEMP. VELOCITY ENTH.
(ATH) (K) (M/S) (J/KG)
SEPR_1 2.026E+01 8.567E+02 9.466E+01 1.205E+06
POWER SUMMARY
HMODEL INPUT FPODUCED CCNSUMED LoSS
(H) (H) (W) (H)
IN_GAS -5.898E-02 0.000E+00 0.000E+00 0.000E+00
IN_LIQ 2.5356-02 0.000E+00 0.000E+00 0.000E+00
Mitfio_1 0.000E400 1.175E406 0.000E+CO 0.0Q0E+00
SEPR_1 0.000E+00 0.00CE+00 0.000E+00 0.0C0E+00
HT_LTQ 1.279E+06 0.000E+00 0.000E+00 0.000E+00
HT_COOL 0.000E+00 0.000E+00 0.000E+00 9.219E+05
CP_GAS 0.000E+00 0.000E+00 8.175E+05 0.000E+00
SYST_1 1.279E+06 1.175E406 8.179E+05 9.219E+05
NET 3.567E405
AUXILIARY 0.000E+00
EFFICIENCY 2.790E-01
SUDSYSTEM: A
NCRMAL TERMINATION
0BJECTIVE: -2.79003E-01
VARIABLZS
1 2.59439E+01 MMHD_1.EXIT_PRES
2 9.73418E+01 IN_LIQ.M
3 2.02613E+01 TPHZ_1.EXIT_PRES
4 1.2785S€+06 HT_LIQ.HEAT
5 5.05051€+01 CP_GAS.EXIT_PRES
6 -9.21354E+05 HT_COOL.HEAT
7 1.91774E+06 HX_REG.HEAT
CONSTRAINTS
1 -9.52804E-11 MM4D_1.VOID_FRACTION<0.85
2 1.97428€-01 TPHX_1.VOID_FRACTION>0.55
1 -1.28536€-07 TFIIX_1.FRES_DIFF_IN=0.0
2 -2.07116E-07 IN_LIQ.DT=0.0
3 1.283656-09 IN_GAS.DP=0.0
4 -2.16734E-08 HT_COOL.FLC.TEMP=310.0
3 1.07357€-08 HX_REG.FLC.TEMP<SEFR_1.FLC1.TEMP-20.0

MASS
(KG/S)
1.000E+00
1.000E+00
1.000E+00
1.000E+00
1.000E+00
1.000E+00
1.000E+00
1.000E+00
1.000E+00

MASS
(KG/S)
9.734E+01
9.734E+01
9.734E+01
9.734E+01
9.734E+01
9.734E+01
9.734E+01
9.734€E+01

HASS
(KG/S)
0.000E+00

MASS
(KG/S)
0.000E+00

SPEC_VOL
(M*#3/KG)

3.557€-01

6.796E-01
8.670€-01
8.671E-01
4.985E-01
3.170e-01
1.898E-01
3.432e-01
3.557e-01

SPEC VOL
(M*#3/KG)

1.235€-03
1.2356-03

SPEC VOL
(M**3/KG)
8.671E-01

SPEC VOL
(M**3/KG)
1.231€-03

ENERGY
(W)
6.055E+06
6.016E+406
6.004E+06
6.004E+06
4.087€E+06
3.165E+06
3.983E+06
5.900E+06
6.055E+06

ENERGY
(H)
1.188E+08
1.177€+08
1.177e+08
1.177€+08
1.177€+08
1.190E+08
1.190E+08
1.188€+08

ENERGY
(H)
0.000E+00

ENERGY
(H)
0.000€+00

QUALITY

1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0E+00
1.0€+00
1.0E+00
1.0E+00
1.0E+00

QUALITY

0.0E+00
0.0E+00
0.0E+00
0.0E+00
0.0E+00
0.0E+00
0.0E+00
0.0E+00

QUALITY
1.0E+00

QUALITY
0.0E+00

Internal:

J.G. Asbury
F.C. Bennett
M.J. Bernard
G.K. Berry (33)
S.K. Bhattacharyya
D.J. Bingaman
L.W. Carlson
K.C. Chang
S.U. Choi

L.S. Chow

J.M. Cook

E.J. Croke

E.J. Daniels
E.M. Dean

C.B. Dennis
D.R. Diercks
J.J. Dzingel
H.K. Geyer (10)
R.F. Giese

External:

151

Distribution for ANL/FE-85-3

S.J. Grammel
W. Harrison
J.E. Helt

D.R. Henley
H.S. Huang
J.F. Koenig

M. Krumpelt
K.D. Kuczen
J. Lazar

C. Lee

G.P. Lewis
R.A. Lewis
C.D. Livengood
R.W. Lyczkowski
K.S. Macal

V. Minkov
K.M. Myles
0.0. Ohlsson
C.B. Panchal

C.V. Pearson

M. Petrick

G.N. Reddy

J.J. Roberts

N.F. Sather

W.W. Schertz

R. Sekar

Y.W. Shin

A.J. Sistino

T.G. Surles

C.E. Swietlik

A. Thomas

S.P. Vanka

C.S. Wang

A.M. Wolsky

ANL Contract Copy
ANL Libraries (2)
ANL Patent Department
TIS Files (6)

U.S. Department of Energy Technical Information Center, for distribution

per UC-32 and UC-90 (242)
Manager, U.S. Department of Energy Chicago Operations Offlce (DOE-CH)
Energy and Environmental Systems Division Review Committee:
R.S. Berry, The University of Chicago
G.E. Dials, Dials and Assoc., Santa Fe, N.M.
B.A. Egan, Environmental Research and Technology, Inc., Concord, Mass.
W.H. Esselman, Electric Power Research Institute, Palo Alto, Calif.
M.H. Kohler, Bechtel National, Inc., San Francisco
J.W. McKie, University of Texas, Austin
N.C. Mullins, Virginia Polytechnic Institute and State University, Blacksburg
J.J. Stukel, University of Illinois, Urbana
J.J. Wortman, North Carolina State University, Raleigh
R.D. Andrews, Rocky Mountain Energy, Broomfield, Colo.
R. Bajura, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.
J.M. Begovich, Oak Ridge National Laboratory, Oak Ridge, Tenn.
S.K. Beer, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.
8. Biondo, Office of Fossil Energy, U.S. Department of Energy, Washington, D.C.

152

H.H. Blecker, ICARUS Corp., Rockville, Md.

D.P. Bloomfield, PSI/Systems, Andover, Mass.

A. Boni, Physical Sciences, Inc., Andover, Mass.

H. Branover, Ben-Gurion University, Tel Aviv, Israel

D. L. Breton, Dow Chemical USA, Plaquemine, La.

R. Carabetta, Pittsburgh Energy Technology Center, U.S. Department of Energy,
Pittsburgh

P. Chung, University of Illinois, Chicago

J.G. Cleland, Research Triangle Institute, Research Triangle Park, N.C.

K. Craig, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

J. Cutting, Gilbert Associates, Reading, Penn.

K.dJ. Daniel, General Electric Corporate R&D, Schenectady, N.Y.

S. Divakaruni, Electric Power Research Institute, Palo Alto, Calif.

J.S. Dweck, J.S. Dweck, Inc., Denver, Colo.

A. Dyson, Tennessee Valley Authority, Chattanooga, Tenn.

J. Elliott, Massachusetts Institute of Technology, Cambridge, Mass.

G. Enyedy, PDQ$, Inc., Gates Mills, Ohio

M. Faist, Radian Corp., Austin, Texas

L.T. Fan, Kansas State University

J. Fillo, Environmental Research and Technology, Inc., Pittsburgh

J. Fisher, Stone and Webster, Boston

H.J. Gadiyar, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

P.W. Gallier, ASPEN Technology, Inc., Cambridge, Mass.

G. Garrison, University of Tennessee Space Institute, Tullahoma, Tenn.

E.W. Geller, Flow Industries, Inc., Kent, Wash.

J.H. Gibbons, Office of Technology Assessment, U.S. Congress

F.D. Gmeindl, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

L.E. Graham, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown W.Va.

H. Hagler, Hagler, Bailly, and Co., Washington, D.C.

K. Haynes, Foster Wheeler Synfuels Corp., Livingston, N.J.

J. Henry, University of Tennessee at Chattanooga

S.C. Hill, Los Alamos National Laboratory, Los Alamos, N.M.

R. Holmann, Westinghouse Electric Corp., Pittsburgh

F. Honea, Grand Forks Project Office, Grand Forks, N.D.

D.A. Horazak, Westinghouse Electric Corp., Concordville, Penn.

W. Jackson, HNJ Corp., Washington, D.C.

B. Joseph, Washington University, St. Louis, Mo.

D.E. Kash, University of Oklahoma

A.A. Khan, Union Carbide Corp., Oak Ridge, Tenn.

S. Knoke, Flow Industries, Inc., Kent, Wash.

D. Krastman, Pittsburgh Energy Technology Center, U.S. Department of Energy,
Pittsburgh .

H. Link, Solar Energy Research Institute, Golden, Colo.

T. Littert, Westinghouse R&D, Pittsburgh

153

P.S. Lowell, P.S. Lowell Co., Inc., Austin, Texas

C. Mah, Aerojet Energy Conversion Co., Sacramento, Calif.

T. McCloskey, Notre Dame College, South Euclid, Ohio

w.d. MgMichael, Research Triangle Institute, Research Triangle Park, N.C.

M.C. Millman, Halcon Computer Technology, New York

L. Miller, U.S. Department of Energy, Germantown, Md.

L. Mims, Chicago

L.M. Naphtali, U.S. Department of Energy, Washington, D.C.

S.A. Newman, Foster Wheeler Energy Corp., Livingston, N.J.

J. Notestein, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

T. O'Brien, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

A. Pappano, Pasadena, Calif.

M. Paskin, Allison Gas Turbine, Indianapolis, Ind.

J. Patten, Gilbert Associates, Reading, Penn.

L. Perini, Applied Physics Lab, Johns Hopkins Laboratory, Laurel, Md.

M. Perimutter, U.S. Department of Energy, Pittsburgh

T.T. Philips, Los Alamos National Laboratory, Los Alamos, N.M.

R. Piccirelli, Wayne State University, Detroit, Mich.

E. Pierson, Purdue University-Calumet, Hammond, Ind.

A.A. Pitrolo, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

P. Probert, Babcock and Wilcox Co., Barberton, Ohio

G.H. Quentin, Electric Power Research Institute, Palo Alto, Calif.

R. Raghavan, Foster Wheeler Energy Corp., Livingston, N.J.

M.W. Reed, Tennessee Valley Authority, Chattanooga, Tenn.

LLH. Rinard, Halecon SD Group, New York

L. Saroff, Dravo Engineers, Inc., Pittsburgh

R. Shinnar, City College of New York .

C.H. Sink, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

D.P. Smith, General Electric Corporate R&D, Schenectady, N.Y.

I. Smith, The City University, London, U.K.

G. Steinfeld, Science Applications, Inc., Morgantown, W.Va.

S.S. Stern, Halcon SD Group, New York

K. Stone, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

B. Svreek, University of Calgary, Alberta

D. Swink, Office of Fossil Energy, U.S. Department of Energy, Washington, D.C.

J. Templemeyer, Southern Illinois University, Carbondale, Ill.

W.C. Thomas, Radian Corp., Austin, Texas

W. Trzaskoma, Gilbert Assoc., Inc., Reading, Penn.

V.S. Underkoffler, Gilbert Assoc., Inc., Reading, Penn.

S.R. Vatcha, Ashland Oil, Ine., Ashland, Ky.

K. Vyas, Morgantown Energy Technology Center, U.S. Department of Energy,
Morgantown, W.Va.

R.E. Weinstein, Gilbert/Commonwealth, Reading, Penn.

154

J. Weisman, University of Cincinnati, Ohio

W. Wells, Center for Research on Sulfur in Coal, Champaign, Ill.
G. Wheeler, U.S. Department of Energy, Germantown, Md.

F. Wong, Electric Power Research Institute, Palo Alto, Calif.

S. Wu, University of Tennessee Space Institute, Tullahoma, Tenn.
R.K. Young, Stearns-Catalytie, Inc., Homer City, Penn.

J. Zaranek, U.S. Steel Corp., Monroeville, Penn.

ARGONNE NATIONAL LAB WEST

iiiliim

